KNX manual

Flush-mounted blind/switch actuator JU 1, Flush-mounted blind actuator JU 1 RF

4942550

4941650

Contents
1 IMPORTANT WARNINGS! 3
2 Function description 4
3 Operation 5
4 Technical data 6
4.1 JU 1 6
4.2 JU 1 RF 8
5 General information about KNX Secure 10
5.1 Start-up with "KNX Data Secure" 10
5.2 Start-up without "KNX Data Secure" 11
6 The JU 1 application programme 12
6.1 Selection in the product database 12
6.2 Overview of communication objects 13
6.3 Description of communication objects 18
6.4 Parameter pages overview 32
6.5 General parameters 34
6.6 Parameters for the blind actuator 35
6.7 Parameters for the switch actuator 56
6.8 Parameters for the external inputs I1, I2 purely as KNX binary inputs 72
6.9 Parameters for direct control of the blind actuator 93
6.10 Parameters for direct control of the switch actuator 97
7 Application examples - blind actuator 101
7.1 Blind actuator direct control: Basic configuration 101
7.2 Controlling the blind actuator via the bus 103
7.3 Blind actuator with ventilation function 107
8 Application examples - switch actuator 111
8.1 Direct control of switch actuator: Basic configuration 111
8.2 Controlling switch actuator channels via the bus 113
8.3 Switch actuator channels with and without direct control 116
9 Appendix 119
9.1 General information about KNX RF 119
9.2 The scenes 120
9.3 Conversion of percentages to hexadecimal and decimal values 123

1 N IMPORTANT WARNINGS!

\. Risk of electric shock!

$>$ The device JU 1 RF does not have basic insulation around the terminals and plug connection!
> The inputs carry mains voltage!
$>$ When connecting the inputs or before any intervention at one of the inputs, interrupt the 230 V supply of the device.
> Protect against accidental contact during installation.
> Maintain a minimum distance of 3 mm from live parts or use additional insulation, e.g. separating strips/walls.
> Do not remove the insulation from the unused inputs.
> Do not cut off the conductors of the unused inputs.
$>$ Do not connect mains voltage (230 V) or other external voltages to the inputs!
> During installation, ensure there is adequate insulation between mains voltage (230 V) and bus or inputs (min. 5.5 mm).

2 Function description

(1) The JU 1 device can be configured either as a 1-channel blind actuator (C1), or as a 2-channel switch actuator (C1, C2). ${ }^{1}$
The JU 1 RF device is a pure blind actuator.

Furthermore, both devices have 2 KNX binary inputs (I1, I2).

Usage as a blind actuator: JU 1, JU 1 RF

- 1-channel flush-mounted blind actuator.
- Configurable features: e.g. type of motor, response to power failure and restoration...
- 2 external inputs: can either be used for direct control of the actuator or as independent KNX binary inputs.
- Participation in central commands, such as up/down and save/call up scene.
- 8 individual positions can be preset and called up, for example via scenes.
- 5 safety objects: $3 x$ wind, rain and frost.
- Correction of improper drive connection via parameters.
- Start-up mode for electronic motors
- Teaching of runtime possible

Usage as a switch actuator: JU 1 only

- 2-channel flush-mounted switch actuator.
- Adjustable features: e.g. switching, delayed switching, pulse function.
- 2 external inputs: can either be used for direct control of the actuator or as independent KNX binary inputs.
- Links, type of contact (NC contact/NO contact) and participation in central commands such as permanent on, permanent off, central switching and save/call up scene.
- Switch functions: e.g. on/off, pulse, on/off delay, staircase light with forewarning.
- Logical links: e.g. block, AND, release, OR.
- Activation of the channel function via 1-bit telegram or 8-bit threshold.
- NTC input for actual temperature measurement.
- $\quad 4$-pole cable connection for external inputs.

[^0]
3 Operation

The device has 2 external inputs for buttons, switches, etc.
(1) In the initial delivery condition, i.e. prior to KNX programming, the actuator can be operated directly as a blind actuator with buttons at 11 and I 2 .

Depending on the setting of the 11 external input in the ETS, the actuator can be operated in 2 different ways:

Control via bus telegrams.
This is the classic configuration for a KNX actuator.
The actuator is controlled exclusively via bus telegrams.
(1) In this case, the external inputs I1 and 12 have no internal connection to the actuator.

Direct control (standard setting in the ETS) ${ }^{2}$
The actuator channels can be operated with conventional button ${ }^{3}$ or switch ${ }^{4}$.
These are connected directly to the external inputs I1 and I2.
(i) The input configured this way are then used exclusively for this function and are no longer connected to the bus, i.e. there are no communication objects.

The actuator itself retains all of its communication objects in this configuration.

See chapter "Application examples".
${ }^{2}$ Standard parameters button
${ }^{3}$ Blind and switch actuator
${ }^{4}$ Only switch actuator

4 Technical data

4.1 JU 1

Operating voltage	KNX bus voltage
KNX bus current	5 mA
Connection type	Screw terminals \| bus connection: KNX bus terminal
Type of installation	Flush-mounted
$L \times W \times D$	$44.5 \times 44.5 \times 32$
Max. cable cross-section	Solid: $0.5 \mathrm{~mm}^{2}(\emptyset 0.8)$ to $4 \mathrm{~mm}^{2}$ strand with crimp terminal: $0.5 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$
Number of channels	1x blind or 2 x switching
Contact gap	< 3 mm (μ contact)
Switch output	Floating, common connection in the middle.
Switching different phases	no
Type of contact	NO contact, 10 A per channel, max. 16 A per device
Resistive load	2400 W
Incandescent/halogen lamp load	800 W
Fluorescent lamp load (EB)	58 W
Compact fluorescent lamps	15 W
LED lamps	$\begin{aligned} & <2 \mathrm{~W}: 3 \mathrm{~W} \\ & >2 \mathrm{~W}: 30 \mathrm{~W} \end{aligned}$
Suitable for SELV	Yes, if all channels switch SELV
Number of binary inputs	2
Ambient temperature	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$

(i) The switching capacity ratings for lamps with electronic ballast, such as LEDs, compact fluorescent lamps, fluorescent lamps with EB, etc., might vary depending on the technical characteristics of the ballasts.
(1)

The switching capacity ratings refer to a relay lifetime of at least 30000 switching cycles.
(1)

It is possible to exceed the switching capacity ratings for these lamps.
However, this will reduce the lifetime of the relay.

theben

4.2 JU 1 RF

Operating voltage	KNX bus voltage
Standby output	< 0,4 W
Connection type	Screw terminals
Type of installation	Flush-mounted
$L \times W \times D$	$44.5 \times 44.5 \times 32$
Max. cable cross-section	Solid: $0.5 \mathrm{~mm}^{2}(\emptyset 0.8)$ to $4 \mathrm{~mm}^{2}$ strand with crimp terminal: $0.5 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$
Number of channels	1x blind
Contact gap	< 3 mm (μ contact)
Switch output	Up, Down - non-floating
Switching different phases	no
Type of contact	NO contact, 5 A
Suitable for SELV	no
Number of binary inputs	2
Ambient temperature	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
Radio standard	KNX
Transmission frequency	868,3 MHz
Transmission power	10 mW
Coding	FSK (Frequency Shift Keying)
Transceiver type	Bidirectional

Generally, it is not allowed to exceed the current and voltage ratings stated on the
device!

5 General information about KNX Secure

ETS5 Version 5.5 and higher support secure communication in KNX systems. A distinction is made between secure communication via the IP medium using KNX IP Secure and secure communication via the TP and RF media using KNX Data Secure. The following information refers to KNX Data Secure.

In the ETS catalogue, KNX products supporting "KNX-Secure" are clearly identified.

As soon as a "KNX-Secure" device is included in the project, the ETS requests a project password. If no password is entered, the device is included with Secure Mode deactivated. However, the password can also be entered or changed later in the project overview.

5.1 Start-up with "KNX Data Secure"

For secure communication, the FDSK (Factory Device Setup Key) is required. If a KNX product supporting "KNX Data Secure" is included in a line, the ETS requires the input of the FDSK. This device-specific key is printed on the device label and can either be entered by keyboard or read by using a code scanner or notebook camera.

Example of FDSK on device label:

theben

0048FF000000
Device Certificate (FDSK)
AABL57-P7KAAA-CAQDAQ-CQMBYI-BEFAWD-ANBYHT

4941670

After entering the FDSK, the ETS generates a device-specific tool key. The ETS sends the tool key to the device to be configured via the bus. The transmission is encrypted and authenticated with the original and previously entered FDSK key. Neither the tool key nor the FDSK key are sent in plain text via the bus.
After the previous action, the device only accepts the tool key for further communication with the ETS.
The FDSK key is no longer used for further communication, unless the device is reset to the factory setting: In this case, all set safety-related data will be deleted.
The ETS generates as many runtime keys as needed for the group communication you want to protect. The ETS sends the runtime keys to the device to be configured via the bus. Transmission takes place by encrypting and authenticating them via the tool key. The runtime keys are never sent in plain text via the bus.

The FDSK is saved in the project and can be viewed in the project overview.
Also, all keys of this project can be exported (backup).

During project planning, it can be defined subsequently which functions / objects are to communicate securely. All objects with encrypted communication are identified by the "Secure" icon in the ETS.

5.2 Start-up without "KNX Data Secure"

Alternatively, the device can also be put into operation without KNX Data Secure. In this case, the device is unsecured and behaves like any other KNX device without KNX Data Secure function.
To start up the device without KNX Data Secure, select the device in the 'Topology' or 'Devices' section and set the 'Secure start up' option in the 'Properties' area of the 'Settings' tab to 'Disabled'.

6 The JU 1 application programme

6.1 Selection in the product database

Manufacturer	Theben AG
Product family	Output
Product type	JU 1, JU 1 RF
Programme name	$\mathrm{JU} 1, \mathrm{JU} 1 \mathrm{RF}$

Number of communication objects	$48^{5}, 25^{6}$
Number of group addresses	254
Number of associations	255

(i) The ETS database can be found on our website: www.theben.de/en/downloads en

6.2 Overview of communication objects

6.2.1 Blind actuator

No.	Object name	Function	Length	R	W	C	T	DPT
1	Channel C1	UP / DOWN	1 bit	-	W	C	-	1,008
2	Channel C1	Step / stop	1 bit	-	W	C	-	1,007
3	Channel C1	\% height	1 byte	-	W	C	-	5,001
4	Channel C1	\% slat	1 byte	-	W	C	-	5,001
5	Channel C1	Block comfort/automatic	1 bit	-	W	C	-	1,001
6	Channel C1	1 = block	1 bit	-	W	C	-	1,001
		1 = enable	1 bit	-	W	C	-	1,003
7	Channel C1	Call up/save scenes	1 byte	-	W	C	-	18,001
8	Channel C1	Enable scenes = 1	1 bit	-	W	C	-	1,003
		Block scenes = 1	1 bit	-	W	C	-	1,001
9	Channel C1	Priority on safety	2 bits	-	W	C	-	2,001
10	Channel C1	Position A	1 bit	-	W	C	-	1,003
11	Channel C1	Position B	1 bit	-	W	C	-	1,003
12	Channel C1	Position C	1 bit	-	W	C	-	1,003
14	Channel C1	Presence	1 bit	-	W	C	-	1,001
15	Channel C1	Heating support	1 bit	-	W	C	-	1,001
16	Channel C1	Cooling support	1 bit	-	W	C	-	1,001
17	Channel C1	Room temperature	2 bytes	-	W	C	-	9,001
18	Channel C1	Height feedback 1 bit	1 bit	R	-	C	T	1,009
19	Channel C1	Height feedback \%	1 byte	R	-	C	T	5,001
20	Channel C1	Slat feedback \%	1 byte	R	-	C	T	5,001
21	Channel C1	Feedback comfort/automatic	1 bit	R	-	C	T	1,011
22	Channel C1	Start-up mode	1 bit	-	W	C	-	1,001
23	Channel C1	Send runtime	2 bytes	R	-	C	T	7,005
		Receive runtime	2 bytes	-	W	C	-	7,005
24	Channel C1	Window contact 1	1 bit	-	W	C	-	1,001
25	Channel C1	Window contact 2	1 bit	-	W	C	-	1,001
40	Alarm	Excess temperature	1 bit	R	-	C	T	1,005

6.2.2 Switch actuator

No.	Object name	Function	Length	R	W	C	T	DPT
1	Channel C1	Switch object	1 bit	-	W	C	-	1,001
		Threshold 0.. 65535	2 bytes	-	W	C	-	7,001
		Threshold EIS 5 (DPT 9.xxx)	2 bytes	-	W	C	-	9.xxx
		Threshold as a percentage	1 byte	-	W	C	-	5,001
		Threshold 0.. 255	1 byte	-	W	C	-	5,010
2	Channel C1	Switching with priority	2 bits	-	W	C	-	2,001
3	Channel C1	Logic input in XOR gate	1 bit	-	W	C	-	1,002
		Logic input in AND gate	1 bit	-	W	C	-	1,002
		Logic input in OR gate	1 bit	-	W	C	-	1,002
4	Channel C1	Block	1 bit	-	W	C	-	1,001
5	Channel C1	Call up/save scenes	1 byte	-	W	C	-	18,001
6	Channel C1	Block scenes = 1	1 bit	-	W	C	-	1,001
		Enable scenes = 1	1 bit	-	W	C	-	1,003
7	Channel C1	On/Off feedback	1 bit	R	-	C	T	1,001
8	Channel C1	Time to next service	4 bytes	R	-	C	T	13,100
		Operating hours feedback	4 bytes	R	-	C	T	13,100
9	Channel C1	Service required	1 bit	R	-	C	T	1,001
10	Channel C1	Reset operating hours	1 bit	-	W	C	-	1,001
		Reset service	1 bit	-	W	C	-	1,001
21-31: objects for channel C2								
40	Alarm	Excess temperature	1 bit	R	-	C	T	1,005

theben

6.2.3 External inputs: Switch/button function

No.	Object name	Function	Length	R	W	C	T	DPT
41	Channel 11.1	Switching	1 bit	R	W	C	T	1,001
		Priority	2 bits	R	-	C	T	2,001
		Send percentage value	1 byte	R	-	C	T	5,001
		Send value	1 byte	R	-	C	T	5,010
42	Channel 17.2	Switching	1 bit	R	W	C	T	1,001
		Priority	2 bits	R	-	C	T	2,001
		Send percentage value	1 byte	R	-	C	T	5,001
		Send value	1 byte	R	-	C	T	5,010
45	Channel 11	Block = 1	1 bit	-	W	C	-	1,001
		Block = 0	1 bit	-	W	C	-	1,003
51-55	Channel I2 (details: see channel I1)							

6.2.4 External inputs: Dimming function

No.	Object name	Function	Length	R	W	C	T	DPT
41	Channel 17	Switching	1 bit	R	W	C	T	1,001
42	Channel 11	Brighter / darker	4 bits	R	-	C	T	3,007
		Brighter	4 bits	R	-	C	T	3,007
		Darker	4 bits	R	-	C	T	3,007
43	Channel 11.1	Switching	1 bit	R	W	C	T	1,001
		Priority	2 bits	R	-	C	T	2,001
		Send percentage value	1 byte	R	-	C	T	5,001
		Send value	1 byte	R	-	C	T	5,010
45	Channel 11	Block = 1	1 bit	-	W	C	-	1,001
		Block = 0	1 bit	-	W	C	-	1,003
51-55	Channel I2 (details: see channel I1)							

theben

6.2.5 External inputs: Blinds function

No.	Object name	Function	Length	R	W	C	T	DPT
41	Channel 11	Step / stop	1 bit	R	-	C	T	1,010
42	Channel 11	UP / DOWN	1 bit	R	W	C	T	1,008
		UP	1 bit	R	-	C	T	1,008
		DOWN	1 bit	R	-	C	T	1,008
43	Channel 11.1	Switching	1 bit	R	W	C	T	1,001
		Priority	2 bits	R	-	C	T	2,001
		Send percentage value	1 byte	R	-	C	T	5,001
		Height \% ${ }^{7}$	1 byte	R	-	C	T	5,001
		Send value	1 byte	R	-	C	T	5,010
		2-byte 9.x	2 bytes	R	-	C	T	9.xxx
		4-byte 14.x	4 bytes	R	-	C	T	14.xxx
44	Channel 11.2	Slat \% ${ }^{8}$	1 byte	R	-	C	T	5,001
45	Channel 11	Block = 1	1 bit	-	W	C	-	1,001
		Block $=0$	1 bit	-	W	C	-	1,003
51-55	Channel I2 (details: see channel I1)							

6.2.6 External inputs: Temperature input function (I2 only)

No.	Object name	Function	Length	R	W	C	T	DPT
51	Channel 12	Actual value for temperature	2 bytes	R	-	C	T	9,001

6.2.7 External inputs: Window contact function

No.	Object name	Function	Length	R	W	C	T	DPT
41	Channel I1	Window contact 1	1 bit	R	-	C	T	1,001
45	Channel I1	Block $=1$	1 bit	-	W	C	-	1,001
		1 bit	-	W	C	-	1,003	
41	Channel I2	Window contact 2	1 bit	R	-	C	T	1,001
45	Channel I2	Block $=1$	1 bit	-	W	C	-	1,001
		1 bit	-	W	C	-	1,003	

[^1]
6.2.8 Common objects

6.2.8.1 Blind actuator

No.	Object name	Function	Length	R	W	C	T	DPT
74	Central	Call up/save central scenes	1 bytes	-	W	C	-	18,001
75	Central safety 1	1	1 bit	-	W	C	-	1,002
76	Central safety 2	2	1 bit	-	W	C	-	1,002
77	Central safety 3	3	1 bit	-	W	C	-	1,002
78	Central	UP / DOWN	1 bit	-	W	C	-	1,008
79	Central safety	Rain	1 bit	-	W	C	-	1,002
80	Central safety	Frost	1 bit	-	W	C	-	1,002

6.2.8.2 Switch actuator

No.	Object name	Function	Length	R	W	C	T	DPT
71	Central	Central permanent ON	1 bit	-	W	C	-	1,001
72	Central	Central permanent OFF	1 bit	-	W	C	-	1,001
73	Central	Central switching	1 bit	-	W	C	-	1,001
74	Central	Call up/save central scenes	1 byte	-	W	C	-	18,001

6.3 Description of communication objects

6.3.1 Objects for the blind actuator

Object 1: UP/DOWN
Raise the roller blinds/blinds with " 0 " and lower with " 1 ".

Object 2: Step/Stop
If the drive moves, it will be stopped when a Step/Stop telegram is received. If the drive is stationary at this moment, then a short slat turning (step) is performed on blinds. With the other drive types, the current position is adjusted up or down depending on the specified step direction.

The direction of the step is determined from whether a 0 or 1 is sent to the object.
No step is performed if the configured number of steps for a complete turn has already been reached.

Object 3: \% Height

This raises/lowers the roller blinds/blinds to a certain height.
The setpoint value is expressed in \%.
$0 \% \ldots 3 \%$ = upper end position
100% = lower end position
This function can be blocked by the comfort automatic object (see below).

Object 4: \% Slat
Specification of a particular slat turning in \%
This function can be blocked by the comfort automatic object (see below)

Object 5: Block Comfort/Automatic
A 1 on this object locks the functions Drive Height and Drive Slat.
This function is used to prevent the blind from being adjusted due to external influences, and to thus maintain a preferred slat position of the blinds.
The Up/Down function is maintained (object UP/DOWN).

Object 6: Block/enable

Blocks the channel function.
Responses to the block being set and cancelled can be configured if the block function has been activated (Configuration options parameter page).

Object 7: Call up/save scenes
Only available if the scene function has been activated (Configuration options parameter page).
This object can be used to save and subsequently call up scenes.
Saving stores the channel status.
It does not matter how this status is produced (whether via switch commands, central objects or the buttons on the device). The saved status is restored when it is called up.
All scene numbers from 1 to 63 are supported.
Each channel can participate in up to 8 scenes.
The scene that is currently active can be ended with the value 63 (= scene 64).
See appendix: Scenes

Object 8: Block scenes / enable scenes
Blocks the scene function with a 1 or a 0 depending on the configuration.
As long as it is blocked, scenes cannot be saved or called up

Object 9: Priority on safety
Priority on safety will be used when the roller blinds or sun protection devices must remain stationary in an end position for a certain time, e.g. for window cleaning.

This operating mode has the highest priority level.
While priority on safety is active, all operating commands (UP/DOWN, \% Height, Step/Stop, Slat $\%)$, the other safety objects and the manual operation will be ignored.

Object value	Priority on safety
0	inactive
1	
2	DOWN
3	

Priority on safety is ended with a 1 or a 0.

Object 10: Position A

With a 1, the drive is brought to the predefined position A (preset or end position).
See parameter page Positions via 1 bit.

Object 11: Position B

With a 1, the drive is brought to the predefined position B (preset or end position).
See parameter page Positions via 1 bit.

Object 12: Position C

With a 1 , the drive is brought to the predefined position C (preset or end position). See parameter page Positions via 1 bit.

Object 13
п.a.

Object 14: Presence
Presence status for the heating or cooling support.
See parameter page Sun protection.

Object 15: Heating support
Activate heating support, see parameter page Sun protection

Object 16: Cooling support
Activate cooling support, see parameter page Sun protection.

Object 17: Room temperature
Receives the current room temperature in ${ }^{\circ} \mathrm{C}$ for the sun protection function.

Object 18: Height feedback 1 bit
Current drive height feedback in as DPT1.009.

Object 19: Height feedback \%
Current drive height feedback in \%.

Object 20: Slat feedback \%
Current slat position feedback in \%.

Object 21: Feedback comfort/automatic
$0=$ Automatic operation: drive position is controlled e.g. by the weather station.
1 = Comfort active: The channel is currently in comfort mode, telegrams on the objects height \% and slat \% are not executed.

Object 22: Start-up mode
0 = Normal mode (no start-up)
1 = Activate start-up mode

theben

Object 23: Send runtime, receive runtime
The function of the object is dependent on the selected Drive runtime setting:

Setting the drive runtime	Function	Usage
Teach in in start-up mode (send)	Only in start-up mode: Sends the runtime that is determined for the channel to all channels that are also in start-up mode.	With the first DOWN command after selection of the start-up mode, the teaching-in of the runtime begins by measuring the time to the next Stop command. As soon as the Stop command takes place, the measured runtime will be saved, the value sent and start-up ended.
via object in start-up mode (receive)	Only in start-up mode: Receives the determined runtime of the sending channel	Runtime will be received, saved, and start-up ended.
via ETS	not used.	

Object 24: Window contact 1
Input object for the first ${ }^{9}$ window contact of the ventilation function.

Object 25: Window contact 2
Input object for the second window contact of the ventilation function.
This is required to distinguish between window open and window tilted
(i)

The input objects channel C1 - window contact 1 and channel C1 - window contact 2 are not connected to inputs I 1 and I 2 internally. The connection is exclusively implemented via bus telegrams. ${ }^{10}$ For this purpose, these objects are connected with the objects channel 11 - window contact 1 and channel 12 - window contact 2 via group addresses.

[^2]
6.3.2 Objects for the switch actuator

Object 1: Switch object, threshold as a percentage, threshold 0..255, threshold DPT 9.xxx, threshold 0.. 65535
Input object: this object activates the set channel function (see parameter: Channel function).

The set channel function can either be activated via 1-bit telegram or by exceeding a threshold (8- or 16-bit telegram).

Parameter		Activation of channel function via
Activation of function via	Type of threshold object	1-bit telegram
Switch object		Exceeding per cent value
Exceeding the threshold	Object type: Per cent (DPT 5.001)	Object type: Counter value 0..255 (DPT $5.010)$
	Any value in given numerical range	

Object 2: Switching with priority
Priority control:

Status of object Switching with priority	Channel status
0	As specified by the input object ${ }^{11}$
1	OFF
2	ON
3	

Object 3: Logic input in AND gate, in OR gate, in XOR gate
Only available if link is activated (Configuration options parameter page).
Forms a logical link together with the input object to activate the channel function.

Object 4: Block
Blocks the channel function.
Responses to the block being set and cancelled can be configured if the block function has been activated (Configuration options parameter page).

[^3]Object 5: Call up/save scene
Only available if the scene function has been activated (Configuration options parameter page).
This object can be used to save and subsequently call up scenes.
Saving stores the channel status.
It does not matter how this status is produced (whether via switch commands, central objects or the buttons on the device).
The saved status is restored when it is called up.
All scene numbers from 1 to 64 are supported.
Each channel can participate in up to 8 scenes.
See appendix: Scenes

Object 6: Block scenes = 1, enable scenes = 1
Blocks the scene function with a 1 or a 0 depending on the configuration.
As long as it is blocked, scenes cannot be saved or called up.

Object 7: On/Off feedback
Reports the current channel status.
The status can also be inverted depending on configuration.

Object 8: Time to next service, operating hours feedback
Only available if the hour counter function is activated
(Configuration options parameter page).
Reports, depending on selected type of hour counter (Hour counter and service parameter page), either the remaining time to the next service or the current status of the hour counter.

Object 9: Service required
Only available if the hour counter function has been activated (Configuration options parameter page) and Type of hour counter $=$ Counter for time to next service.

Reports if the next service is due.
$0=$ not due
1 = service is due.

Object 10: Reset service, reset operating hours

Function	Usage
Reset service ${ }^{12}$	Reset service interval counter.
Reset operating hours ${ }^{13}$	Reset hour counter

${ }^{12}$ Depending on configuration
${ }^{13}$ Depending on configuration

6.3.3 Objects for the external inputs: Switch function

Object 41: Channel I1.1
First output object of the channel (first telegram).
4 telegram formats can be set:
Switching ON/OFF, priority, send percentage value, send value.

Object 42: Channel 11.2
Second output object of the channel (second telegram).
4 telegram formats can be set:
Switching ON/OFF, priority, send percentage value, send value.

Object 45: Channel 11 block $=1$, or block $=0$
The channel is blocked via this object.
The acting direction of the block object and behaviour when the block is set or cancelled can be configured.

Objects 51-55
Objects for channel I2

6.3.4 Objects for the external inputs: Button function

Object 41: Channel I1.1
First output object of the channel (first telegram).
4 telegram formats can be set:
Switching ON/OFF, priority, send percentage value, send value.

Object 42: Channel I1.2
Second output object of the channel (second telegram).
4 telegram formats can be set:
Switching ON/OFF, priority, send percentage value, send value.

Object 45: Channel 11 block $=1$, or block $=0$
The channel is blocked via this object.
The acting direction of the block object and behaviour when the block is set or cancelled can be configured.

Objects 51-55
Objects for channel I2

6.3.5 Objects for the external inputs: Dimming function

Object 41: Channel I1.1 switching
Switches the dimmer on and off.

Object 42: Channel 11.1 brighter, darker, brighter / darker
4-bit dimming commands.

Object 43: Channel 11.1 switching, priority, percentage..
Output object for the additional function with double-click.
4 telegram formats can be set:
Switching ON/OFF, priority, send percentage value, send value.

Object 45: Channel I1 block $=1$, or block $=0$
The channel is blocked via this object.
The acting direction of the block object and behaviour when the block is set or cancelled can be configured.

Objects 51-55
Objects for channel I2

6.3.6 Objects for the external inputs: Blinds function

Object 41: Channel I1 step / stop
Sends step/stop commands to the blind actuator.

Object 42: Channel I1 UP/DOWN, UP, DOWN
Sends operating commands to the blind actuator.

Object 43: Channel 11.1 switching, priority, percentage.., height \%
Output object for the additional function with double-click.
5 telegram formats can be set:
Switching ON/OFF, priority, send percentage value, send value, height \%.

Object 44: Channel 11.1 slat \%
Slat telegram for positioning the blinds upon double-click (together with object height $\%$, with object type $=$ height + slat).

Object 45: Channel 11 block $=1$, or block $=0$
The channel is blocked via this object.
The acting direction of the block object and behaviour when the block is set or cancelled can be configured.

Objects 51-55
Objects for channel I2

6.3.7 Objects for the external inputs: Temperature input function

Object 51: Channel 12 actual value for temperature ${ }^{14}$
Sends the temperature measured at input I2 (remote sensor or floor temperature sensor).

14 The temperature input function is only possible with input I2.

6.3.8 Objects for the external inputs: Window contact function

$$
\begin{aligned}
& \text { The output objects channel } 11 \text { - window contact } 1 \text { and channel } 12 \text { - window } \\
& \text { contact } 2 \text { are not connected to blind actuator channel C1 internally. } \\
& \text { The connection is exclusively implemented via bus telegrams. }{ }^{15} \\
& \text { For this purpose, these objects are connected with the objects } \\
& \text { channel C1 - window contact } 1,2 \text { of the actuator via group addresses. }
\end{aligned}
$$

Object 41: Channel 11 window contact 1
First output object of the channel (first telegram).
4 telegram formats can be set:
Switching ON/OFF, priority, send percentage value, send value.

Object 45: Channel 11 block $=1$, or block $=0$
The channel is blocked via this object.
The acting direction of the block object and behaviour when the block is set or cancelled can be configured.

Objects 51-55
Objects for channel I2
${ }^{15}$ In this way, window contact inputs I 1 and I 2 can be used for C 1 , as well as for other bus sharing units, blind actuators (displays etc.).

6.3.9 Common objects for the blind actuator

Object 40: Excess temperature
Reports when the device has reached too high a temperature, e.g. because the maximum current has been exceeded, and has switched the output off.

Object 74: Call up/save central scenes
Central object for using scenes.
This object can be used to save and subsequently call up scenes.
See appendix: Scenes

Objects 75, 76, 77: Central safety 1, 2, 3
The safety objects allow a specific response of the drives to a particular situation with a high priority. These objects can, for example, be linked with 3 differently placed wind sensors (weather stations).

Example: A safety object is linked to a wind sensor.
A drive to which a textile sun protection device is connected is configured to react to this safety object.
The operating condition is normal as long as a 0 is present. In the event of a storm, the wind sensor sends a 1 to the safety object and the sun protection is immediately moved to the configured safety position.

A safety object must only be actuated by one device, as otherwise conflicting commands could cancel each other out.

With a request for safety objects e.g. via the ETS function "Read value": If the Safety on status arises through cyclical monitoring, the object value remains at 0

\triangleThe safety statuses must be reinitialized after download.

Object 78: Central Up/Down

This object can be used to centrally control all drives which are configured for it.
For example, all of the roller blinds on one facade can be raised or lowered at the same time with one button
0 = raise
1 = lower

Object 79: Central safety rain
This object can be used to move all drives which are configured for it into a defined position when there is a central rain alarm.

Object 80: Central safety frost
This object can be used to move all drives which are configured for it into a defined position when there is a central frost alarm.

6.3.10 Common objects for the switch actuator

Object 40: Excess temperature
Reports when the device has reached too high a temperature, e.g. because the maximum current has been exceeded, and has switched the output off.

Object 71: Central permanent ON
Central switch-on function.
$0=$ no function
1 = permanent ON

Participation in this object can be configured
(Configuration options parameter page).
(1) This object takes top priority.

As long as it is set, other switch commands will not work on the participating channel.

Object 72: Central permanent OFF
Central switch-off function.
$0=$ no function
1 = permanent OFF
Participation in this object can be configured
(Configuration options parameter page).

(i)
This object has the second highest priority after Central permanent ON. As long as it is set, other switch commands will not work on the participating channel.

Object 73: Central switching
Central switch function.
$0=0 F F$
$1=0 \mathrm{~N}$
Participation in this object can be configured
(Configuration options parameter page).
With this object, the participating channel responds exactly as if its input object were receiving a switch command.

Object 74: Call up/save central scenes
Central object for using scenes.
This object can be used to save and subsequently call up "scenes".
See appendix: Scenes

6.4 Parameter pages overview

6.4.1 General

Parameter page	Description
General	General parameters: Selection of switch actuator or blind actuator, etc.

6.4.2 Blind actuator JU 1, JU 1 RF

Parameter page	Description
Blind actuator channel C1	
Configuration options	Characteristics of channel and activation of additional functions (scenes, sun protection, block, etc.).
Drive settings	Direction of movement, runtimes, etc.
Sun protection	Heating and cooling support settings.
Positions via 1 bit	Behaviour when calling up or leaving the 1-bit positions
Ventilation	Automatic positioning of blinds or roller blinds when opening the window.
Safety wind / rain / frost	Priority and participation in the safety objects for wind, rain and frost.
Presets	8 preset heights and slat positions that can be called up via scenes or 1-bit objects.
Restoration of power	Behaviour during failure and restoration of bus and mains power.
Block function	Type of block telegram and response to blocking.
Scenarios	Selection of scene numbers relevant to the channel.

6.4.3 Switch actuator JU 1

Parameter page	Description
Switch actuator channel C1/C2	
Configuration options	Characteristics of channel and activation of additional functions (scenes, links, etc.).
Contact characteristics	Type of contact and status after download, bus failure, etc.
Threshold	Settings for triggering channel function through exceeding threshold.
Block function	Type of block telegram and response to blocking.
Scenes	Selection of scene numbers relevant to the channel.
Feedback	Status of feedback object, etc.
Hour counter and service	Type of hour counter and, if applicable, service interval, etc.
Link	Selection of logical link.

theben

6.4.4 External inputs

Parameter page	Description
External inputs I1, I2	
Configuration options	Function of the input, debounce time, number of telegrams, block function, etc. Additionally in the case of I2: Selection of the temperature sensor, temperature calibration, etc.
Switch object 1, 2	Object type, transmission behaviour, etc. can be set for each object individually.
Direct switching	Switching statuses in the case of direct control
Button object 1, 2	Object type, transmission behaviour, etc. can be set for each object individually.
Dimming	Type of control.
Blinds	Type of control.
Double-click	Additional telegrams for Dimming and Blinds.
Window contact	Direction of action, cycl. Transmission, etc.

6.5 General parameters

6.5.1 General

> (1) The first parameter, Usage, defines the purpose of the device, and should be set first.

Designation	Values	Description
Usage	1-channel blind actuator	The device is used as a blind actuator.
	2-channel switch actuator	The device is used as a 2 -fold switch actuator.
Use external inputs	No Yes	The actuator is exclusively controlled via the bus. 2 binary inputs are available. Possible functions: 11: Control actuator directly (button/switch function) or KNX binary input. 12: Control actuator directly (button/switch function) or KNX binary input with temperature.
Send excess temperature alarm ${ }^{16}$ cyclically	always cyclically only send cyclically in case of an error	The alarm info object always sends the current status cyclically and in the event of a change: Only sends in case of an error, cyclically and in the event of a change.
Cycle time	every min every 2 min every 3 min every 30 min every 45 min every 60 min	Cycle time for the alarm info object

${ }^{16}$ When the temperature in the device increases too much due to overloading,
the output is switched off and an alarm telegram is sent.
Normal operation cannot be resumed until the temperature has dropped by around 40 K.

6.6 Parameters for the blind actuator

6.6.1 Channel C1: Configuration options

Designation	Values	Description
Type of hanging	Blinds Roller blinds / awning / general drive...	The type of hanging which is to be actuated
Setting the drive runtime	via ETS Teach in in start-up mode (send) via object in start-up mode (receive)	Runtime is set on the parameter page Drive settings. In start-up mode, this channel should send the taught-in runtime to the other channels. In start-up mode, this channel should receive and apply the taught-in runtime from another channel.
Response after download	Maintain runtime Delete runtime	Not available with Drive runtime setting = via ETS. Download has no influence on the taught-in runtime Taught-in runtime is deleted during download.
Activate sun protection	yes no	Activate sun protection function with heating or cooling support. No sun protection function.
Activate ventilation function	yes no	When opening the window, the blinds or roller blinds move automatically to a defined position. No ventilation function.
Activate block function	$\begin{aligned} & \hline \text { Yes.. } \\ & \text { no } \end{aligned}$	Should the block function be used?
Activate scenes	Yes.. no	Should scenes be used?
Direction of drive run	normal inverted	Standard setting: Hanging moves from top to bottom. For special applications or quick fix for wrongly wired devices (up/down directions mixed up).
Block Comfort/Auto on UP/DOWN/STOP command		Suppression of the Comfort/Auto function with manual positioning via On, Off or Stop telegrams.

Designation	Values	Description
	no, only via object Comfort/Automatic yes, and via object Comfort/Automatic OFF yes, and after 0.5 h OFF yes, and after 1 h OFF yes, and after 2 h OFF yes, and after 48 h OFF	No suppression: Comfort/Auto remains active after manual positioning. Comfort/Auto can be ended both by manual positioning and via the object Comfort/Automatic The Comfort/Auto function is blocked for the set time via manual positioning. Once this time has lapsed, Comfort/Auto is active once again and the drive reacts to height telegrams. The block can be ended at any time via the object Comfort / Automatic (=0).
Response after return to automatic operation	No response Update height \% / slat \%	Response after the Block Comfort/Auto object has been reset to 0 .

6.6.2 Drive settings

Designation	Values	Description
Complete runtime Down	manual input 5.. 500	Only available when Drive runtime setting = via ETS. Enter the measured runtime for descending (in seconds).
Drive start-up time	$0 . .1000 \mathrm{~ms}$	Time until the drive motor has reached its full output. This time is usually determined empirically.
Runtime adjustment for ascent	$\begin{aligned} & \text { manual input } \\ & -15 . .+15 \end{aligned}$	Enter difference between runtime when ascending and runtime (in seconds) when descending. Correction value $=$ tup - toown
Step duration of Step/Stop object ${ }^{17}$	```no steps 250 ms 500 ms 1s 2s 3s 4s 5s 6s 7s 10s```	Only for roller blinds/awning/general drive. This specifies whether or not it should be possible to adjust the drive in small steps, and it also specifies the duration of a single step.
Tighten fabric (awning)	yes no	Only for roller blinds/awning/general drive. At values above 70%, the hanging, awning or roller blinds will be retightened by moving back briefly. On roller blinds it is guaranteed that the vent slots will remain open. no tightening.
Complete slat turning 4 ... 250	4 .. 250	Enter the measured turn time of the slats in increments of 100 ms . $10=10 \times 100 \mathrm{~ms}=1 \mathrm{~s}$
No. of steps for a complete turn ${ }^{18}$	3 steps 4 steps 7 steps ... 12 steps	This specifies the number of individual steps a complete slat turn is to be divided into (3 to 12).

[^4]| Designation | Values | Description |
| :--- | :--- | :--- |
| On receipt of a step/stop
 command | process immediately
 (recommended)
 Wait 0.3 s to see if an
 UP/DOWN command
 follows
 Wait 0.4 s to see if an
 UP/DOWN command
 follows
 Wait 0.5 s to see if an
 UP/DOWN command
 follows | Every received step command is
 carried out immediately. |
| Step commands are only
 executed if no operating
 command is received within the
 set time.
 These settings apply to push
 buttons which, when pressed
 and held, first send a step
 command and then an operating
 command. | | |
| Pause time before reversal of
 direction | 0.5 s
 1 s
 2 s
 3 s | Pause introduced to protect the
 drive motor against conflicting
 commands (e.g. if a descend
 command is received while
 ascending).
 This setting depends on the
 information supplied by the
 manufacturer of the drive |
| Automatic execution of the slat
 object value
 [\%] after the height object [\%] | yes
 no | Selection whether or not the slat
 position (according to the slat
 object \%) is to be resumed after
 the height adjustment via the
 height object \%. |
| Assignment of the 0\% position
 to the slat objects [\%] | 0\% corresponds to slat
 position on lowering
 0\% corresponds to slat
 position on ascending | Input of the starting position for
 the calculation of the slat turn. |
| Participation in central Up/Down
 object | yes
 no | Should the drive respond to the
 central object? |
| Transmission of feedback | only at change
 cyclically and at change | When should feedback
 (obj. slat feedback and height
 feedback) be sent? |
| Time for cyclical transmission of
 feedback | 2 minutes, 3 minutes,
 5 minutes, 10 minutes,
 15 minutes, 20 minutes,
 30 minutes, 45 minutes
 60 minutes | Ifyclically, at what interval? |

6.6.3 Sun protection

(i) As soon as a room is not occupied, the sun protection function can be used to save energy costs again and again.
For this purpose, the sunlight is deliberately let in during the winter, while protection is provided in summer by moving down the blinds or roller blinds, if required.

Designation	Values	Description
Desired room temperature during sun protection mode	$\begin{aligned} & 15^{\circ} \mathrm{C}-30^{\circ} \mathrm{C} \\ & \text { Default }=21^{\circ} \mathrm{C} \end{aligned}$	Setpoint for heating or cooling support (see below).
Response to presence in sun protection mode (presence object $=1$)	Preset 1, Preset 2 Preset 3, Preset 4 Preset 5, Preset 6 Preset 7, Preset 8 top end position lower end position no reaction, unchanged update (height / slat)	Approach a preset position. See Presets parameter page. Approach an end position. Do not respond. Approach last received position.
Response to heating support	Preset 1, Preset 2 Preset 3, Preset 4 Preset 5, Preset 6 Preset 7, Preset 8 top end position lower end position	If the conditions for heating support are fulfilled, i.e.: - Heating support obj. = 1 - Presence obj. $=0$ (room not occupied) - Room temperature < Desired room temperature during sun protection mode Then heating by solar radiation should be favoured with the following setting. Approach a preset position. Recommended for blinds, as height and slat turning can be set. See Presets parameter page. Recommended. only for special applications.
Response when heating support is no longer needed	Preset 1, Preset 2 Preset 3, Preset 4 Preset 5, Preset 6 Preset 7, Preset 8 top end position lower end position	Approach a preset position. See Presets parameter page. Approach an end position.

theben

Designation	Values	Description
	no reaction, unchanged update (height / slat)	Do not respond. Approach last received position.
Response to cooling support	Preset 1, Preset 2 Preset 3, Preset 4 Preset 5, Preset 6 Preset 7, Preset 8 top end position lower end position	If the conditions for cooling support are fulfilled, i.e.: - Cooling support obj. =1 - Room temperature > Desired room temperature during sun protection mode Then heating by solar radiation should be prevented with the following setting. Approach a preset position. Recommended for blinds, as height and slat turning can be set. See Presets parameter page. only for special applications. Recommended for roller blinds and textile sun protection.
Response when cooling support is no longer needed	Preset 1, Preset 2 Preset 3, Preset 4 Preset 5, Preset 6 Preset 7, Preset 8 top end position lower end position no reaction, unchanged update (height / slat)	Approach a preset position. See Presets parameter page. Approach an end position. Do not respond. Approach last received position.

(i) Ventilation function and heating/cooling support ${ }^{19}$ are mutually exclusive. If
ventilation is active ${ }^{20}$, no movements due to the heating/cooling support are executed,
but only after completion ${ }^{21}$ of the ventilation function ${ }^{22}$.
Vice versa, if ventilation is active at the end of heating/cooling support, the configured
action ${ }^{23}$ will not be executed.

[^5]
6.6.4 Positions via 1 bit

(1) 3 individually preallocated positions can be called up using 1-bit objects (objects position A, B and C).

Designation	Values	Description
Position A		
Response when receiving a 1	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position	Approach a preset position. See Presets parameter page. Approach an end position.
Response when receiving a 0	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position no response update (height / slat)	Approach a preset position. See Presets parameter page. Approach an end position. Do not respond. Approach last received position.
Position B		
Response when receiving a 1	See above	Desired drive height or slat position for position B
Response when receiving a 0	See above	
Position C		
Response when receiving a 1	See above	Desired drive height or slat position for position C
Response when receiving a 0	See above	

6.6.5 Ventilation

(1) With the ventilation function, the blinds or roller blinds are automatically moved to a defined position when opening or tilting the window.

Designation	Values	Description
When the window is tilted		
Approach ventilation position	Never Always Only when below	No change of position. Always approach the preset position. Do not take the current drive position into account. Only approach the new position if the blinds or roller blinds position is lower than the desired ventilation position (preset).
Position	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position	Desired ventilation position. See Presets parameter page. Approach an end position.
When the window is open		
Approach ventilation position	Never Always Only when below	No change of position. Always approach the preset position, do not take the current drive position into account Only approach the new position if the blinds or roller blinds position is lower than the desired ventilation position (preset).
Position	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position	Desired ventilation position. See Presets parameter page. Approach an end position.

Designation	Values	Description
Position after end of ventilation	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8	Desired drive position when the window is closed again. See Presets parameter page.
Block comfort/auto during ventilation	top end position lower end position	no via the height and slat objects. Movement based on the height and slat objects remains blocked, until the window is closed again. If Position after end of ventilation = Update height and slat is configured, the previously received values will be approached after the end of ventilation. 24

(i) If the window is open/tilted while ventilation is blocked, the ventilation function will not be started.

If a block is set while the ventilation function is active, it will be abandoned. ${ }^{25}$

> (1) Ventilation function and heating/cooling support${ }^{26}$ are mutually exclusive. If ventilation is active ${ }^{27}$, no movements due to the heating/cooling support are executed, but only after completion ${ }^{28}$ of the ventilation function ${ }^{29}$. Vice versa, if ventilation is active at the end of heating/cooling support, the configured action ${ }^{30}$ will not be executed.

[^6]
6.6.5.1 Window contacts

The current window status is received via the objects Window contact 1 and Window contact 2. From the combination of both telegrams, the device can detect, whether the window is closed, tilted, or open.
(1) The status of the window contacts is exclusively received via the bus.

Designation	Values	Description
Number of window contents for this window	1 contact 2 contacts (open/tilted)	Here, only 2 states are detected: window open / window closed. The device can distinguish 3 states: closed - tilted - open. The corresponding switching statuses are defined below.
When the window is tilted		
Status object window contact 1	$\begin{aligned} & \text { Off } \\ & \text { On } \\ & \hline \end{aligned}$	Combination at which the window is detected as "tilted".
Status object window contact 2	$\begin{aligned} & \hline \text { Off } \\ & \text { On } \\ & \hline \end{aligned}$	
When the window is open		
Status object window contact 1	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	Combination at which the status is detected as "open".
Status object window contact 2	$\begin{aligned} & \hline \text { Off } \\ & \text { On } \\ & \hline \end{aligned}$	
Acting direction object window contact 7^{31}	0 = window open or tilted $0=\text { window closed }$	$0=\text { open }^{32} / 1 \text { = closed }$ $0=\text { closed } / 1=\text { open }^{33}$
Block telegram	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { cancel block } \\ & 1=\text { block } \\ & 0=\text { block } \\ & 1 \text { = cancel block } \end{aligned}$

(i)

The input objects channel C1 - window contact 1 and channel C1 - window contact 2 are not connected to inputs 11 and I 2 internally.
The connection is exclusively implemented via bus telegrams. ${ }^{34}$ For this purpose, these objects are connected with the objects channel I1 - window contact 1 and channel 12 - window contact 2 via group addresses.
${ }^{31}$ If only one window contact is used.
${ }^{32}$ No differentiation between open and tilted possible.
${ }^{33} \mathrm{No}$ differentiation between open and tilted possible.
${ }^{34}$ Thus, the window status can be received either via the own inputs 11,12 , or from other bus sharing units (binary input, button interface, etc.).

6.6.6 Safety wind / rain / frost

Designation	Values	Description
Priority of safety objects	1. wind 2. rain, 3. frost 1. wind, 2. frost, 3. rain 1. rain, 2. wind, 3. frost 1. rain, 2. frost, 3. wind 1. frost, 2. wind, 3. rain 1. frost, 2. rain, 3. wind	If wind, rain and frost alarm occur together, the parameters of the object with the highest priority will be implemented. Example: 1. rain, 2. frost, 3. wind The parameters with priority 1 apply, i.e. start and end of rain safety. If the rain alarm (priority 1) is cancelled, the parameters for the object with priority 2 apply, here frost - start. If the object with priority 2 is also cancelled, the one with priority 3 applies.
Monitor safety objects cyclically	по every 10 min every 20 min every 60 min	No monitoring. After mains failure, the safety object will be reset to 0 . Safety objects that do not receive any telegrams within the time set here will be handled as if they had received an ON telegram and trigger an alarm (e.g. WIND, etc.). The sender of the safety telegrams (e.g. weather station) must transmit them cyclically. Max. cycle time $=$ monitoring time/2 Example: Monitoring time = every 20 minutes, cyclical transmission time $=10 \mathrm{~min}$ or less.
Participation in safety WIND	$\begin{aligned} & \text { yes } \\ & \text { no } \end{aligned}$	Should the channel react to wind alarm?
Source(s)	Safety object 1 wind Safety object 2 wind Safety object 3 wind Safety object $1+2$ (OR linked) Safety object $1+3$ (OR linked) Safety object $2+3$ (OR linked) safety object $1+2+3$ (OR linked)	Which safety objects are used for wind alarm?
Start		Start on wind alarm:

Designation	Values	Description
	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position unchanged (stopped upon operating command)	Approach a preset position. See parameter page Presets. Approach an end position. Do not respond. The drive should stop upon safety start during a movement.
End	same as before safety Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position update (height / slat) no response	End on wind alarm: move back to the previous position. Approach a preset position. See parameter page Presets. Approach an end position. Approach last received position. Do not respond.
Participation in safety RAIN	$\begin{aligned} & \text { yes } \\ & \text { no } \end{aligned}$	Should the channel react to rain alarm?
Start	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position unchanged (stop upon operating command)	Start on rain alarm: Approach a preset position. See Presets parameter page. Approach an end position. Do not respond. The drive should stop upon safety start during a movement.
End	same as before safety	End on rain alarm: move back to the previous position.

Designation	Values	Description
	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position update (height / slat) no response	Approach a preset position. See parameter page Presets. Approach an end position. Approach last received position. Do not respond.
Participation in safety FROST	$\begin{array}{\|l\|} \hline \text { yes } \\ \text { no } \\ \hline \end{array}$	Should the channel react to frost alarm?
Start	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position unchanged (stopped upon operating command)	Start on frost alarm: Approach a preset position. See parameter page Presets. Approach an end position. Do not respond. The drive should stop upon safety start during a movement.
End	same as before safety Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position update (height / slat) no response	End on frost alarm: move back to the previous position. Approach a preset position. See parameter page Presets. Approach an end position. Approach last received position. Do not respond.

Designation	Values	Description
Response after priority on safety		Priority on safety will be used when the roller blinds or sun protection devices must remain stationary in an end position for a certain time, e.g. for window cleaning. See object Priority on safety. This operating mode has the highest priority level.
	Preset 7 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position no reaction, unchanged Approach a preset position. update (height / slat)	Ape parameter page Presets.
un not respond.		
Approach last received position.		

6.6.7 Presets

(1)

The presets are a predefined position settings, which can be called up if required, e.g. on safety (wind, rain, frost), on restoration of the bus supply, during ventilation, etc.

Designation	Values	Description
Preset 1		
Position	$\begin{aligned} & 0 \%, 10 \%, 20 \% \\ & 30 \%, 40 \%, 50 \% \\ & 60 \%, 70 \%, 80 \% \\ & 90 \%, 100 \%, \\ & \text { no change } \end{aligned}$	Desired drive height and slat position for preset 1
Slat	$\begin{aligned} & 0 \%, 10 \%, 20 \% \\ & 30 \%, 40 \%, 50 \% \\ & 60 \%, 70 \%, 80 \% \\ & 90 \%, 100 \% \text {, } \\ & \text { no change } \end{aligned}$	
Preset 2		
Position	See above	Desired drive height and slat position for preset 2
Slat	See above	
Preset 3		
Position	See above	Desired drive height and slat position for preset 3
Slat	See above	
Preset 4		
Position	See above	Desired drive height and slat position for preset 4
Slat	See above	
Preset 5		
Position	See above	Desired drive height and slat position for preset 5
Slat	See above	
Preset 6		
Position	See above	Desired drive height and slat position for preset 6
Slat	See above	
Preset 7		
Position	See above	Desired drive height and slat position for preset 7
Slat	See above	
Preset 8		
Position	See above	Desired drive height and slat position for preset 8
Slat	See above	

theben

6.6.8 Restoration of power

Designation	Values	Description
Response in the event of bus failure ${ }^{35}$	Up Down Stop	(i) After a bus failure, the device is no longer supplied with power. Therefore, the drive can only be stopped or moved up/down. ${ }^{36}$ Raise. Lower. Stop drive.
Behaviour on restoration of the bus supply ${ }^{37}$	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position no response	After return of bus or mains voltage... Approach a preset position. See Presets parameter page. Approach an end position. Do not respond.

[^7]
theben

6.6.9 Block function

Designation	Values	Description
Block telegram	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { cancel block } \\ & 1=\text { block } \\ & 0=\text { block } \\ & 1 \text { = cancel block } \end{aligned}$ Note: The block is always deactivated after reset.
Response when the block is set	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position unchanged (stopped upon operating command)	Approach a preset position. See Presets parameter page. Approach an end position. Do not respond. The drive should stop when a block command is received during a movement.
Response when the block is cancelled	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position unchanged (stopped upon operating command) update (height / slat)	Approach a preset position. See Presets parameter page. Approach an end position. Do not respond. The drive should stop when a block command is received during a movement. Approach last received position.

6.6.10 Scenes

Designation	Values	Description
Block telegram for scenes	Block with 1 (standard) Block with 0	$\begin{aligned} & \hline 0=\text { cancel block } \\ & 1=\text { block } \end{aligned}$ $0 \text { = block }$ $1 \text { = cancel block }$ Note: With this setting, the scenes are always blocked immediately after reset or download.
All channel scene statuses	Overwrite on download Unchanged after download	A download deletes all scene memories in a channel, i.e. all previously taught-in scenes. When a scene number is called, the channel assumes the configured "Status after download" (see below). See appendix: Teaching in scenes without telegrams All previously taught-in scenes are saved. However, the scene numbers to which the channel should react can be changed (see below: Channel reacts to).
Participation in central scene object	$\begin{aligned} & \text { No } \\ & \text { yes } \end{aligned}$	Should the device react to the central scene object?
Response when the scene is cancelled (with scene value 63)	Preset 1 Preset 2 Preset 3 Preset 4 Preset 5 Preset 6 Preset 7 Preset 8 top end position lower end position no response update (height) slat)	Behaviour when the object Call up/save scenes receives value 63 ($\$ 3 \mathrm{~F}$) and thus the current scene is cancelled. Approach a preset position. See Presets parameter page. Approach an end position. Do not respond. Approach last received position.
1st scene - preallocated with preset 1		
Channel reacts to	No scene number Scene number 1 ... Scene number 63	First of the 8 possible scene numbers to which the channel is to react.
Comment for this scene number	(Enter name)	Designation or comment for this scene number.
Block comfort/automatic during this scene	no	During this scene, the channel continues to react to height and slat telegrams

theben

Designation	Values	Description
	yes	During this scene, the channel no longer reacts to height and slat telegrams. The Up/Down function is maintained.
Permit teach-in	по yes	Scenes can only be called up. The user can both call up and teach in or amend scenes.
2nd scene - preallocated with preset 2		
Channel reacts to	No scene number Scene number 1 Scene number 2 Scene number 63	Second of the 8 possible scene numbers
Comment for this scene number	(Enter name)	See above.
Block comfort/automatic during this scene	$\begin{array}{\|l\|} \hline \text { no } \\ \text { yes } \\ \hline \end{array}$	See above.
Permit teach-in	$\begin{array}{\|l} \hline \text { no } \\ \text { yes } \end{array}$	See above.
3rd scene - preallocated with preset 3		
Channel reacts to	No scene number Scene number 1 Scene number 3 Scene number 63	Third of the 8 possible scene numbers
Comment for this scene number	(Enter name)	See above.
Block comfort/automatic during this scene	$\begin{array}{\|l\|} \hline \text { no } \\ \text { yes } \\ \hline \end{array}$	See above.
Permit teach-in	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	See above.
4th scene - preallocated with preset 4		
Channel reacts to	No scene number Scene number 1 Scene number 4 Scene number 63	Fourth of the 8 possible scene numbers
Comment for this scene number	(Enter name)	See above.
Block comfort/automatic during this scene	$\begin{array}{\|l} \hline \text { no } \\ \text { yes } \\ \hline \end{array}$	See above.
Permit teach-in	$\begin{array}{\|l\|} \hline \text { no } \\ \text { yes } \\ \hline \end{array}$	See above.
5th scene - preallocated with preset 5		
Channel reacts to	No scene number Scene number 1 Scene number 5 Scene number 63	Fifth of the 8 possible scene numbers
Comment for this scene number	(Enter name)	See above.

theben

Designation	Values	Description
Block comfort/automatic during this scene	$\begin{aligned} & \text { no } \\ & \text { yes } \\ & \hline \end{aligned}$	See above.
Permit teach-in	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	See above.
6th scene - preallocated with preset 6		
Channel reacts to	No scene number Scene number 1 Scene number 6 ... Scene number 63	Sixth of the 8 possible scene numbers
Comment for this scene number	(Enter name)	See above.
Block comfort/automatic during this scene	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	See above.
Permit teach-in	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	See above.
7th scene - preallocated with preset 7		
Channel reacts to	No scene number Scene number 1 Scene number 7 Scene number 63	Seventh of the 8 possible scene numbers
Comment for this scene number	(Enter name)	See above.
Block comfort/automatic during this scene	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	See above.
Permit teach-in	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	See above.
8th scene - preallocated with preset 8		
Channel reacts to	No scene number Scene number 1 Scene number 8 Scene number 63	Last of the 8 possible scene numbers
Comment for this scene number	(Enter name)	See above.
Block comfort/automatic during this scene	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	See above.
Permit teach-in	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	See above.

6.7 Parameters for the switch actuator

6.7.1 Channel C1 (C2): Configuration options

Designation	Values	Description
Channel function	Switching on / off.. On/off delay.. Pulse function.. Staircase light time switch with forewarning function.. Flashing..	Determines the basic functionality of the channel.
Activation of function via	Switch object Exceeding the threshold	The channel is operated via a 1-bit object. The channel is operated through exceeding a 1- or 2byte threshold. See below: the Threshold parameter page
Adjust block function	Yes. no	The block function can be individually adjusted. The relevant parameter page is shown. The block function works with the standard parameters: - Block with 1 (standard) - When the block is set: Unchanged - When the block is cancelled: Update.
Activate scenes	Yes.. กо	Should scenes be used?
Participation in central objects	no	Central objects are not taken into account.

theben

Designation	Values	Description
	in central switching, permanent ON, permanent OFF only in central permanent ON only in central permanent OFF only in central switching only in central switching and permanent ON only in central switching and permanent OFF only in central permanent ON and permanent OFF	Which central objects are to be taken into account? Central objects enable simultaneous switching on and off of several channels with one single object.
Adjust feedback	Yes.. по	The feedback function can be individually adjusted. The relevant parameter page is shown. The Feedback function works with the standard parameters: - not inverted - do not send cyclically
Activate hour counter	Yes.. กо	Is the hour counter/service interval function to be used?
Activate link	Yes.. no	Use logical links with the channel object?

6.7.2 Contact characteristics

Designation	Values	Description
Type of contact	NO contact NC contact	Standard: The relay contact is closed when a switchon command is issued. Inverted: The relay contact is opened when a switchon command is issued.
Status with download and bus failure	OFF ON unchanged	After download or with bus voltage failure... ..the relay switches off. ..the relay switches on. ...the relay remains in the same state as before. If several switching operations were executed immediately before the bus failure, the energy may not be sufficient for an additional switching operation. In this case, the relay remains in its previous state, regardless of the parameter setting.
Status with restoration of the bus supply	OFF ON same as before failure	After return of bus voltage... ..the relay is switched off. ..the relay switches on. ...the relay remains in the same state as before.

6.7.3 The "On/off delay.." time function

This parameter page appears if On/off delay is chosen as the Channel function.

Designation		Values
Switch-on delay		$0 . .3$
Hours	$0 . .60$	Input of desired switch-on delay in hours.
Minutes	$0 . .255$	Input of desired switch-on delay in minutes.
Seconds	$0 . .3$	Input of desired switch-on delay in seconds.
Switch-off delay	$0 . .60$	Input of desired switch-off delay in hours.
Hours	Input of desired switch-off delay in minutes.	
Minutes	$0 . .255$	Input of desired switch-off delay in seconds.
Seconds		

6.7.4 The "Pulse" time function

This parameter page appears if Pulse function is chosen as the Channel function.

Designation	Values	Description			
Hours	$0 . .3$	Input of desired pulse duration in hours.			
Minutes	$0 . .60$	Input of desired pulse duration in minutes.			
Seconds	$0 . .255$	Input of desired pulse duration in seconds.			
Pulse can be retriggered (with 1 on switch object)	Yes	The pulse can be extended as often as desired via a 1-telegram			
Pulse can be reset (with 1 on switch object)	Yes pulse cannot be extended.		$	$	The pulse can be ended early at any
:---					
time					
via a 0-telegram.					
The pulse cannot be ended early					

6.7.5 The "Staircase light with forewarning function .." time function

This parameter page appears if Staircase light with forewarning function is chosen as the Channel function.
The user can press a button again to extend the staircase light time at any time.

Designation	Values	Description
Staircase light time (min. 1 s)	$0 . .3$	Input of desired switch-on delay in hours.
Hours	$0 . .60$	Input of desired switch-on delay in minutes.
Minutes	$0 . .255$	Input of desired switch-on delay in seconds.
Seconds	0	Determines how often the staircase light time can be extended (restarted) by pressing the button again.
The maximum sum of pulses	...40 Default value $=5$	The light switches off immediately once the staircase light time is completed.
Duration of 1st forewarning in s	1..60 Default value $=10$ Once the staircase light time is completed, the light should flash briefly and then stay on for the duration of the forewarning	
Duration of 2nd forewarning in s	0	No 2nd forewarning. The light switches off at the end of the 1st forewarning.

Example: forewarning function

Staircase light time		1nd forewarning	号	2nd forewarning	OFF

theben

6.7.6 The "Flashing" time function

This parameter page appears if Flashing is chosen as the Channel function.

Designation	Values	Description
ON phase of flash pulse		
Hours	$0 . .3$	Input of desired pulse time in hours.
Minutes	$0 . .60$	Input of desired pulse time in minutes.
Seconds	$0 . .255$	Input of desired pulse time in seconds.
OFF phase of flash pulse		
Hours	$0 . .3$	Input of desired length of break in hours.
Minutes	$0 . .60$	Input of desired length of break in minutes.
Seconds	$0 . .255$	Input of desired length of break in seconds.
How often should it flash	Until it switches off $1 x$ $2 x$ $3 x$ $4 x$ $5 x$ $7 x$ $10 x$ $15 x$ $20 x$ $30 x$ $50 x$	The channel flashes until a switchoff telegram is received. The channel flashes as often as set here.

6.7.7 Threshold

This page is shown if the Activation of the function by exceeding threshold parameter is set.

Designation	Values	Description
Type of threshold object	Per cent (DPT5.001) Counter value 0.255 (DPT 5.010) Counter value 0.. 65535 (DPT 7.001) Floating-point number (DPT9), e.g. temperature, brightness, etc.	Threshold format
Parameter for threshold object Per cent		
Threshold	$\begin{aligned} & \text { 1..99\% } \\ & \text { Default value = 50\% } \end{aligned}$	Desired threshold. Example of NO contact with response as switch object = 1: Switches on when: Object value > threshold Switches off when: Object value < threshold - hysteresis
Hysteresis (as \%)	$\begin{aligned} & \text { 1..99\% } \\ & \text { Default value = 10\% } \end{aligned}$	The hysteresis prevents frequent switching after small fluctuations in readings.
Parameter for threshold object Counter value $0 . .255$		
Threshold	$\begin{aligned} & \text { 1.. } 254 \\ & \text { Default value }=127 \end{aligned}$	Desired threshold. Example of NO contact with response as switch object = 1: Switches on when: Object value > threshold Switches off when: Object value < threshold - hysteresis
Hysteresis	1. 254 Default value $=5$	The hysteresis prevents frequent switching after small fluctuations in readings.
Parameter for threshold object Counter value $0 . .65535$		
Threshold	$\begin{aligned} & \text { 1.. } 65534 \\ & \text { Default value }=1000 \end{aligned}$	Desired threshold. Example of NO contact with response as switch object = 1: Switches on when: Object value > threshold Switches off when: Object value < threshold - hysteresis
Hysteresis	1.. 65534 Default value $=5$	The hysteresis prevents frequent switching after small fluctuations in readings.
Parameter for threshold object Floating-point number (DPT9), e.g. temperature, brightness, etc.)		
Threshold	$\begin{aligned} & \hline-671088.64 . . \\ & \text { 670760.96 } \\ & \text { Default value }=20 \end{aligned}$	Desired threshold. Example of NO contact with response as switch object = 1: Switches on when: Object value > threshold Switches off when: Object value < threshold - hysteresis

Designation	Values	Description
Hysteresis	0.01.. 670760.96 Default value =1	The hysteresis prevents frequent switching after small fluctuations in readings.
Response on exceeding the threshold	As switch object = 0	Should the channel switch on or off on exceeding the threshold? The set type of contact must be taken into account here.
	NO contact: the relay switches off if	
threshold is exceeded.		
NC contact: the relay switches on if		
threshold is exceeded.		

6.7.8 Block function

This page appears when "Adjust block function" is selected on the Configuration options parameter page.

Designation	Values	Description
Block telegram	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { cancel block } \\ & 1=\text { block } \\ & 0=\text { block } \\ & 1=\text { cancel block } \end{aligned}$ Note: The block is always deactivated after reset.
Response when the block is set	OFF ON unchanged	Switch off Switch on No response
Response when the block is cancelled	OFF ON unchanged update	Switch off Switch on No response Restore normal operation and switch relay accordingly.

6.7.9 Scenes

This page appears when the scenes are activated on the Configuration options parameter page. Each channel can participate in up to 8 scenes.

Designation	Values	Description
Block telegram for scenes	Block with 1 (standard) Block with 0	$\begin{array}{\|l} \hline 0 \text { = cancel block } \\ 1 \text { = block } \\ 0=\text { block } \\ 1=\text { cancel block } \\ \text { Note: With this setting, the scenes } \\ \text { are always blocked immediately after } \\ \text { reset or download. } \\ \hline \end{array}$
All channel scene statuses	Overwrite on download Unchanged after download	A download deletes all scene memories in a channel, i.e. all previously taught-in scenes. When a scene number is called, the channel assumes the configured "Status after download" (see below). See appendix: Teaching in scenes without telegrams All previously taught-in scenes are saved. However, the scene numbers to which the channel should react can be changed (see below: Channel reacts to).
Participation in central scene object	$\begin{aligned} & \text { No } \\ & \text { yes } \end{aligned}$	Should the device react to the central scene object?
Channel reacts to	No scene number Scene number 1 Scene number 63	First of the 8 possible scene numbers to which the channel is to react.
Status after download	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	New switching status which is to be allocated to the selected scene number. Only possible if the scene statuses are to be overwritten after download.
Permit teach-in	No Yes	Scenes can only be called up. The user can both call up and teach in or amend scenes.
Channel reacts to	No scene number Scene number 1 Scene number 2 Scene number 63	Second of the 8 possible scene numbers
Status after download	Off	See above.

theben

Designation	Values	Description
	On	
Permit teach-in	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	See above.
Channel reacts to	No scene number Scene number 1 Scene number 3 ... Scene number 63	Third of the 8 possible scene numbers
Status after download	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	See above.
Permit teach-in	$\begin{aligned} & \hline \text { No } \\ & \text { Yes } \\ & \hline \end{aligned}$	See above.
Channel reacts to	No scene number Scene number 1 Scene number 4 ... Scene number 63	Fourth of the 8 possible scene numbers
Status after download	Off	See above.
Permit teach-in	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	See above.
Channel reacts to	No scene number Scene number 1 Scene number 5 Scene number 63	Fifth of the 8 possible scene numbers
Status after download	$\begin{aligned} & \text { Off } \\ & \text { On } \\ & \hline \end{aligned}$	See above.
Permit teach-in	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Yes } \\ \hline \end{array}$	See above.
Channel reacts to	No scene number Scene number 1 Scene number 6 ... Scene number 63	Sixth of the 8 possible scene numbers
Status after download	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	See above.
Permit teach-in	No Yes	See above.
Channel reacts to	No scene number Scene number 1 Scene number 7	Seventh of the 8 possible scene numbers

Designation	Values	Description
	Scene number 63	
Status after download	Off On	No Yes
Permit teach-in	No scene number Scene number 1 \ldots Scene number 8	Last of the 8 possible scene numbers
Channel reacts to	\ldots Scene number 63	
Status after download	Off On	See above.
Permit teach-in	No Yes	See above.

6.7.10 Feedback

Designation	Values	Description
Reported status	Not inverted	Channel switched on: feedback object sends a 1
	inverted	Channel switched on: feedback object sends a 0
Transmit feedback cyclically	No yes	Send at regular intervals?
Time for cyclical transmission of feedback	2 minutes, 3 minutes, 5 minutes, 10 minutes,	At what interval?
	15 minutes, 20 minutes,	
	30 minutes, 45 minutes	
60 minutes		

6.7.11 Hour counter and service

This page appears when Activate hour counter is selected on the Configuration options parameter page.

Designation	Values	Description
Type of hour counter	Hour counter Counter for time to next service	Forward counter for channel duty cycle. Backward counter for channel duty cycle.
Hour counter		
Reporting of operating hours in the event of a change (0.. 100 h, $0=$ no report)	$\begin{aligned} & 0 . .100 \\ & \text { Default value }=10 \end{aligned}$	At what interval is the current counter reading to be sent? Example: $10=$ Send each time the counter reading increases by another 10 hours.
Report operating hours cyclically	No yes	Send at regular intervals?
Time for cyclical transmission	2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes 60 minutes	At what interval?
Counter for time to next service		
Service interval $(x 10 \mathrm{~h})$	$\begin{aligned} & \text { O. } 2000 \\ & \text { Default value }=100 \end{aligned}$	Desired timescale between 2 services. Example: $\begin{aligned} & 10=10 \times 10 \mathrm{~h} \\ & =100 \text { hours } \\ & \hline \end{aligned}$
Reporting of time to service in the event of a change (0 = no report)	$\begin{aligned} & \text { O.. } 100 \\ & \text { Default value = } 10 \end{aligned}$	At what interval is the current counter reading to be sent? Example: $10=$ Send each time the counter reading decreases by another 10 hours.
Report time to service cyclically	$\begin{aligned} & \text { no } \\ & \text { Yes } \end{aligned}$	Send remaining time to next service at regular intervals? \rightarrow Object Time to next service.
Report service cyclically	$\begin{aligned} & \text { no } \\ & \text { Yes } \end{aligned}$	Send expiry of time to next service at regular intervals? \rightarrow Object Service required.
Time for cyclical transmission (if used)	2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 minutes 60 minutes	At what interval?

6.7.12 Link

Designation	Values	Description					
Activate link	OND link	Selection of logical link with the input object The Logic input in AND gate					
object appears.							
The Logic input in OR gate object							
appears.							
The Logic input in XOR gate							
object appears.			$	$	Block object affects logic object	No link	The block object only affects the input object. If required, the logic object can activate the channel function despite block (with OR and XOR link). The block object affects the input object and the logic object. The channel function is completely blocked if the block is active.
:---	:---	:---					

6.8 Parameters for the external inputs 11 , 12 purely as KNX binary inputs

(i) If direct control is not required, inputs I1 and I2 are available as KNX binary inputs.

The parameter Control channel C1 directly ${ }^{38}$ must be set to no for this purpose.

6.8.1 Input 11, I2: Switch function

Designation	Values	Description
Function	Switch.. ${ }^{39}$ Button.. Dimming. Blinds.. Window contact.	Desired use.
Control channel C1 directly	yes No	11 is used exclusively as an input for switch actuator channel C1. I1 is connected to C1 internally and has no communication objects. 11 is used purely as a KNX binary input. There is no internal connection to the switch actuator.
Debounce time	$\begin{aligned} & 30 \mathrm{~ms}, 50 \mathrm{~ms}, 80 \mathrm{~ms} \\ & 100 \mathrm{~ms}, 200 \mathrm{~ms} \text {, } \\ & 1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s} \end{aligned}$	In order to avoid disruptive switching due to bouncing of the contact connected to the input, the new status of the input is only accepted after a delay time. Larger values ($\geq 1 \mathrm{~s}$) can be used as a switch-on delay
Activate block function	no yes	No block function. Show parameters for the block function.
Block telegram	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { cancel block } \\ & 1=\text { block } \\ & 0=\text { block } \\ & 1=\text { cancel block } \end{aligned}$

${ }^{38}$ If necessary, control C2 directly.
${ }^{39}$ Direct control of C1 possible (switch actuator).
${ }^{40}$ Direct control of C1 possible (switch actuator).
${ }^{41}$ Direct control of C1 possible (blind actuator).

Designation	Values	Description
Send cyclically	every min every 2 min every 3 min \ldots every 30 min every 45 min every 60 min	Common cycle time for all 3 output objects of the channel.
Number of telegrams	one telegram two telegrams	Each channel has 2 output objects and can thus send up to 2 different telegrams.

6.8.1.1 Switch objects 1, 2

Each of the 2 objects can be configured individually on its own parameter page.

Designation	Values	Description	
Object type	Switching (1 bit) Priority (2 bit) Value 0-255 Percentage value (1 byte)	Telegram type for this object.	
Send if input = 1	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	Send if voltage is present at the input?	
Telegram	With object type = switching 1 bit		
	ON OFF INVERT	Send switch-on command Send switch-off command Invert current state (ON-OFF-ON etc.)	
	With object type = priority 2 bit		
		Function	Value
	inactive	Priority inactive (no control)	0 (00bin)
	ON	Priority ON (control: enable, on)	3 (11 bin)
	OFF	Priority OFF (control: disable, off)	$2(10$ bin $)$
	With object type = value 0-255		
	0-255	Any value between 0 and 255 can be sent.	
	With object type = percentage value 1 byte		
	0-100\%	Any percentage value between 0 and 100% can be sent.	
Send if input = 0	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	Send if no voltage is present at the input?	
Telegram	See above: Same object type as Send if input = 1		
Send cyclically	no yes, always only if input $=1$ only if input $=0$	When should cyclical sending take place? The cycle time is set on the main parameter page of the channel.	
Response after restoration of the bus supply ${ }^{42}$	none update (immediately) update (after 5 s) update (after 10 s) update (after 15 s)	Do not send. Send update telegram immediately or with delay.	
Response when the block is set	Ignore block no response as with input $=1$	The block function is ineffective with this telegram. Do not respond when the block is set. Respond as with rising edge.	

[^8]| Designation | Values | Description |
| :--- | :--- | :--- |
| | as with input $=0$ | Respond as with falling edge. |
| Response when the
 block is cancelled | no response | Do not respond when the block is
 cancelled.
 Send update telegram. |

6.8.2 Input 11, I2: Button function

Designation	Values	Description
Function	Switch.. ${ }^{43}$ Button.. ${ }^{4}$ Dimming. Blinds.. Window contact	Desired use.
Control channel C1 directly	yes No	11 is used exclusively as an input for switch actuator channel C1. I1 is connected to C1 internally and has no communication objects. 11 is used purely as a KNX binary input. There is no internal connection to the switch actuator.
Debounce time	$30 \mathrm{~ms}, 50 \mathrm{~ms}, 80 \mathrm{~ms}$ $100 \mathrm{~ms}, 200 \mathrm{~ms}$, $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$	In order to avoid disruptive switching due to bouncing of the contact connected to the input, the new status of the input is only accepted after a delay time. Larger values ($\geq 1 \mathrm{~s}$) can be used as a switch-on delay
Connected button	NO contact NC contact	Set the type of connected contact.
Long button push starting at	$300 \mathrm{~ms}, 400 \mathrm{~ms}$ $500 \mathrm{~ms}, 600 \mathrm{~ms}$ $700 \mathrm{~ms}, 800 \mathrm{~ms}$ $900 \mathrm{~ms}, 1 \mathrm{~s}$	Serves to clearly differentiate between long and short button push. If the button is pressed for at least as long as the set time, then a long button push will be registered.
Time for double-click	$\begin{aligned} & 300 \mathrm{~ms}, 400 \mathrm{~ms} \\ & 500 \mathrm{~ms}, 600 \mathrm{~ms} \\ & 700 \mathrm{~ms}, 800 \mathrm{~ms} \\ & 900 \mathrm{~ms}, 1 \mathrm{~s} \end{aligned}$	Serves to differentiate between a double-click and 2 single clicks. Time period in which the second click must begin, in order to recognise a double-click.
Send cyclically	every min every 2 min every 3 min every 30 min every 45 min every 60 min	Common cycle time for all 2 output objects of the channel.
Number of telegrams	one telegram two telegrams	Each channel has 2 output objects and can thus send up to 2 different telegrams.

[^9]| Designation | Values | Description |
| :--- | :--- | :--- |
| Activate block function | no | No block function.
 Show parameters for the block
 function. |
| Block telegram | yes | $0=$ cancel block
 $1=$ block |
| | Block with 1 (standard) | |
| | $0=$ block
 $1=$ a cancel block | |

theben

6.8.2.1 Button objects 1, 2

Designation	Values	Description	
Object type	Switching (1 bit) Priority (2 bit) Value 0-255 Percentage value (1 byte)	Telegram type for this object.	
Send after short operation	do not send Send telegram	Respond to short button push?	
Telegram	With object type = switching 1 bit		
	ON OFF INVERT	Send switch-on command Send switch-off command Invert current state (ON-OFF-ON etc.)	
	With object type = priority 2 bit		
		Function	Value
	inactive	Priority inactive (no control)	0 (00 bin ${ }^{\text {a }}$
	ON	Priority ON (control: enable, on)	3 (11 bin)
	OFF	Priority OFF (control: disable, off)	$2(10$ bin $)$
	With object type = value 0-255		
	0-255	Any value between 0 and 255 can be sent.	
	With object type = percentage value 1 byte		
	0-100\%	Any percentage value between 0 and 100\% can be sent.	
Send after long operation	do not send Send telegram	Respond to long button push?	
Telegram	See above: Same object type as with short operation.		
Send after double-click	do not send Send telegram	Respond to double-click?	
Telegram	See above: Same object type as with short operation.		
Send cyclically	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	The cycle time is set on the main parameter page of the channel.	
Response after restoration of the bus	none	Do not send.	

Designation	Values	Description
supply ${ }^{45}$	As with short (immediately) As with short (after 5 s) As with short (after 10 s) As with short (after 15 s) As with long (immediately) As with long (after 5 s) As with long (after 10 s) As with long (after 15 s) As with double-click (immediately) As with double-click (after 5 s) As with double-click (after 10 s) As with double-click (after 15 s)	Send update telegram immediately or with delay. The value to be sent depends on the value configured for long button push, short button push or double-click.
Response when the block is set	Ignore block no response as with short as with long as with double-click	The block function is ineffective with this telegram. Do not respond when the block is set. Respond as with a short button push. Respond as with a long button push. Respond as with a double-click.
Response when the block is cancelled	no response as with short as with long as with double-click	Do not respond when the block is cancelled. Respond as with a short button push. Respond as with a long button push. Respond as with a double-click.

theben

6.8.3 Input 11, I2: Dimming function

Designation	Values	Description
Channel function	Switch.. Button.. Dimming.. Blinds.. Window contact.	The input controls a dimming actuator,
Control channel C1 directly	No	I1 is used purely as a KNX binary input. There is no internal connection to the switch actuator.
Debounce time	$30 \mathrm{~ms}, 50 \mathrm{~ms}, 80 \mathrm{~ms}$ $100 \mathrm{~ms}, 200 \mathrm{~ms}$, $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$	In order to avoid disruptive switching due to bouncing of the contact connected to the input, the new status of the input is only accepted after a delay time. Larger values ($\geq 1 \mathrm{~s}$) can be used as a switch-on delay
Activate block function	по yes	No block function. Show block function parameter page.
Block telegram	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { cancel block } \\ & 1 \text { = block } \\ & 0=\text { block } \\ & 1=\text { cancel block } \end{aligned}$
Long button push starting at	$300 \mathrm{~ms}, 400 \mathrm{~ms}$ $500 \mathrm{~ms}, 600 \mathrm{~ms}$ $700 \mathrm{~ms}, 800 \mathrm{~ms}$ $900 \mathrm{~ms}, 1 \mathrm{~s}$	Serves to clearly differentiate between long and short button push. If the button is pressed for at least as long as the set time, then a long button push will be registered.
Double-click additional function	по yes	No double-click function The double-click parameter page is shown.
Time for double-click	$300 \mathrm{~ms}, 400 \mathrm{~ms}$ $500 \mathrm{~ms}, 600 \mathrm{~ms}$ $700 \mathrm{~ms}, 800 \mathrm{~ms}$ $900 \mathrm{~ms}, 1 \mathrm{~s}$	Serves to differentiate between a double-click and 2 single clicks. Time period in which the second click must begin, in order to recognise a double-click.

theben

6.8.3.1 Double-click parameter page

Designation	Values	Description	
Object type	Switching (1 bit) Priority (2 bit) Value 0-255 Percentage value (1 byte)	Telegram type for this object.	
Telegram	With object type = switching 1 bit		
	$O N$ OFF INVERT	Send switch-on command Send switch-off command Invert current state (ON-OFF-ON etc.)	
	With object type = priority 2 bit		
		Function	Value
	inactive	Priority inactive (no control)	0 (00bin)
	ON	Priority ON (control: enable, on)	3 (11 bin)
	OFF	Priority OFF (control: disable, off)	2 (10bin)
	With object type = value 0-255		
	0-255	Any value between 0 and 255 can be sent.	
	With object type $=$ percentage value 1 byte		
	0-100\%	Any percentage value between 0 and 100% can be sent.	
Send cyclically	do not send cyclically every min every 2 min every 3 min ... every 45 min every 60 min	How often should it be resent?	
Response after restoration of the bus supply ${ }^{46}$	none As with double-click (immediately) As with double-click (after 5 s) As with double-click (after 10 s) As with double-click (after 15 s)	Do not send. Send update telegram immediately or with delay. The value to be sent depends on the value configured for doubleclick.	
Response when the block is set	Ignore block no response as with double-click	The block function is with this telegram. Do not respond when set. Respond as with a do	ffective he block is le-click.

[^10]| Designation | Values | Description |
| :--- | :--- | :--- |
| Response when the
 block is cancelled | no response | Do not respond when the block is
 cancelled. |
| | as with double-click | Respond as with a double-click. |

6.8.3.2 Dimming parameter page

[^11]| Designation | Values | Description |
| :---: | :---: | :---: |
| | ON
 OFF
 ON after 5 s
 ON after 10 s
 ON after 15 s
 OFF after 5 s
 OFF after 10 s
 OFF after 15 s | Switch on dimmer
 Switch off dimmer
 Switch on dimmer with delay
 Switch off dimmer with delay |
| Response when the block is set | Ignore block
 no response
 ON
 OFF | The block function is ineffective with this telegram.
 Do not respond when the block is set.
 Switch on dimmer
 Switch off dimmer |
| Response when the block is cancelled | no response
 ON
 OFF | Do not respond when the block is cancelled.
 Switch on dimmes
 Switch off dimmer |

6.8.4 Input 11, I2: Blinds function

Designation	Values	Description
Activate channel	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	Use input?
Channel function	Switch.. Button.. Dimming.. Blinds.. Window contact.	The input controls a blind actuator.
Control channel C1 directly	yes No	11 is used exclusively as an input for blind actuator channel C1. I1 is connected to C1 internally and has no communication objects. I1 is used purely as a KNX binary input. There is no internal connection to the switch actuator.
Debounce time	$\begin{aligned} & 30 \mathrm{~ms}, 50 \mathrm{~ms}, 80 \mathrm{~ms} \\ & 100 \mathrm{~ms}, 200 \mathrm{~ms} \\ & 1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s} \end{aligned}$	In order to avoid disruptive switching due to bouncing of the contact connected to the input, the new status of the input is only accepted after a delay time. Larger values ($\geq 1 \mathrm{~s}$) can be used as a switch-on delay.
Activate block function	no yes	No block function. Show block function parameter page.
Block telegram	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { cancel block } \\ & 1=\text { block } \\ & 0=\text { block } \\ & 1=\text { cancel block } \end{aligned}$
Long button push starting at	$\begin{aligned} & 300 \mathrm{~ms}, 400 \mathrm{~ms} \\ & 500 \mathrm{~ms}, 600 \mathrm{~ms} \\ & 700 \mathrm{~ms}, 800 \mathrm{~ms} \\ & 900 \mathrm{~ms}, 1 \mathrm{~s} \end{aligned}$	Serves to clearly differentiate between long and short button push. If the button is pressed for at least as long as the set time, then a long button push will be registered.
Double-click additional function	по yes	No double-click function The double-click parameter page is shown.
Time for double-click	$300 \mathrm{~ms}, 400 \mathrm{~ms}$ $500 \mathrm{~ms}, 600 \mathrm{~ms}$ $700 \mathrm{~ms}, 800 \mathrm{~ms}$ $900 \mathrm{~ms}, 1 \mathrm{~s}$	Serves to differentiate between a double-click and 2 single clicks. Time period in which the second click must begin, in order to recognise a double-click.

6.8.4.1 Double-click parameter page

Designation	Values	Description	
Object type	Switching (1 bit) Priority (2 bit) Value 0-255 Percentage value (1 byte) Height \% + slat \%	Telegram type for this object.	
Telegram	With object type $=$ switching 1 bit		
	$\begin{aligned} & \text { ON } \\ & \text { OFF } \\ & \text { INVERT } \end{aligned}$	Send switch-on command Send switch-off command Invert current state (ON-OFF-ON etc.)	
	With object type = priority 2 bit		
		Function	Value
	inactive	Priority inactive (no control)	0 ($00{ }_{\text {bin }}$)
	ON	Priority ON (control: enable, on)	3 (11 ${ }_{\text {bin }}$)
	OFF	Priority OFF (control: disable, off)	2 (10 bin $)$
	With object type = value 0-255		
	0-255	Any value between 0 and 255 can be sent.	
	With object type = percentage value 1 byte		
	0-100\%	Any percentage value between 0 and 100% can be sent.	
	$\begin{aligned} & \text { With object type = height \% } \\ & + \text { slat \% } \end{aligned}$		
	Height	Upon double-click 2 telegrams are sent simultaneously: Required blind height	
	Slat	Required slat position.	
Send cyclically	do not send cyclically every min every 2 min every 3 min ... every 45 min every 60 min	How often should it be resent?	
Response after restoration of the bus supply ${ }^{48}$	none As with double-click (immediately) As with double-click (after 5 s) As with double-click (after 10 s) As with double-click (after 15 s)	Do not send. Send update telegram immediately or with delay. The value to be sent depends on the value configured for doubleclick.	

[^12]$\left.$| Designation | Values | Description |
| :--- | :--- | :--- |
| Response when the
 block is set | Ignore block | The block function is ineffective
 with this telegram. |
| | no response | Do not respond when the block is
 set. |
| as with double-click | | |\quad| Respond as with a double-click. |
| :--- | \right\rvert\, | Ro not respond when the block is |
| :--- |
| cancelled. |
| block is cancelled |\quad| Respond as with a double-click. |
| :--- |

6.8.4.2 Blinds parameter page

Designation	Values	Description
Operation	One button operation DOWN UP	The input distinguishes between a long and a short button push, and can thus carry out 2 functions. The blinds are operated with a single button. Short button push = step. Long button push = move. Short button push = step. Long button push = lower. Short button push = step. Long button push = raise.
Movement is stopped by	Releasing the button Short operation	How is the stop command to be triggered?
Response after restoration of the mains or bus supply	none UP DOWN UP after 5 s UP after 10 s UP after 15 s DOWN after 5 s DOWN after 10 s DOWN after 15 s	Do not respond. Raise blinds Lower blinds Raise blinds with delay Lower blinds with delay
Response when the block is set	Ignore block no response UP DOWN	The block function is ineffective with this telegram. Do not respond when the block is set. Raise blinds Lower blinds
Response when the block is cancelled	no response ON OFF	Do not respond when the block is cancelled. Raise blinds Lower blinds

theben

6.8.5 Input I2: Temperature input ${ }^{49}$

Designation	Values	Description
Channel function	Switch.. Button.. Dimming.. Blinds.. Temperature input ${ }^{50}$	The input is connected to a temperature sensor.
Sensor type	Remote sensor 1 (9070191) Remote sensor IP 65 (9070459) Floor sensor (9070321)	External temperature sensor 1 Item no. 9070191, for surface-mounted installation. External temperature sensor RAMSES IP65 Item no. 9070459, for surface-mounted installation. Temperature sensor for laying in floor, IP65 protection rating.
Temperature calibration	$\begin{aligned} & -64 .+64 \\ & (\times 0.1 \mathrm{~K}) \end{aligned}$	Correction value for temperature measurement if sent temperature deviates from the actual ambient temperature. Example: Temperature $=20^{\circ} \mathrm{C}$ sent temperature $=21^{\circ} \mathrm{C}$ Correction value $=10$ (d.h. $10 \times 0.1^{\circ} \mathrm{C}$)
Transmit temperature in the event of change of	not due to a change $\begin{aligned} & 0.2 \mathrm{~K} \\ & 0.3 \mathrm{~K} \\ & 0.5 \mathrm{~K} \\ & 0.7 \mathrm{~K} \\ & 1 \mathrm{~K} \\ & 1.5 \mathrm{~K} \\ & 2 \mathrm{~K} \\ & \hline \end{aligned}$	Only send cyclically (if enabled) Send if the value has changed by the selected amount since the last transmission.
Send temperature cyclically	do not send cyclically every min, every 2 min. every 3 min. every 45 min. every 60 min .	How often should the current measured value be resent?

[^13]
6.8.6 Input 11, I2: window contact function

(i) The window contact function is only available in connection with C 1 as blind actuator

Designation	Values	Description
Function	Switch.. ${ }^{51}$ Button.. ${ }^{52}$ Dimming.. Blinds.. ${ }^{53}$ Window contact..	Desired use.
Control channel C1 directly	No	I1 is used purely as a KNX binary input. There is no internal connection to the blind actuator.
Debounce time	$30 \mathrm{~ms}, 50 \mathrm{~ms}, 80 \mathrm{~ms}$ $100 \mathrm{~ms}, 200 \mathrm{~ms}$, $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$	In order to avoid disruptive switching due to bouncing of the contact connected to the input, the new status of the input is only accepted after a delay time. Larger values ($\geq 1 \mathrm{~s}$) can be used as a switch-on delay
Send cyclically	every min every 2 min every 3 min every 30 min every 45 min every 60 min	Common cycle time for all 3 output objects of the channel.
Activate block function	по yes	No block function. Show parameters for the block function.
Block telegram	Block with 1 (standard) Block with 0	$\begin{aligned} & 0=\text { cancel block } \\ & 1=\text { block } \\ & 0=\text { block } \\ & 1=\text { cancel block } \end{aligned}$

${ }^{51}$ Direct control of C1 possible (switch actuator).
${ }^{52}$ Direct control of C1 possible (switch actuator).
${ }^{53}$ Direct control of C1 possible (blind actuator).
The output objects channel 11 - window contact 1 and channel 12 - window
contact 2 are not connected to blind actuator channel $C 1$ internally.
The connection is exclusively implemented via bus telegrams. ${ }^{54}$
For this purpose, these objects are connected with the objects
channel $C 1$ - window contact 1,2 of the actuator via group addresses.

[^14]
theben

6.8.6.1 Window contact

Designation	Values	Description
Telegram when contact closed	$\begin{array}{\|l\|} \hline \text { On } \\ \text { Off } \\ \hline \end{array}$	Set switching status.
Telegram when contact open	$\begin{array}{\|l\|} \hline \text { On } \\ \text { Off } \\ \hline \end{array}$	Is set automatically.
Send cyclically	по yes, always only if input $=1$ only if input $=0$	When should cyclical sending take place? The cycle time is set on the main parameter page of the channel.
Response after restoration of the bus supply ${ }^{55}$	none update (immediately) update (after 5 s) update (after 10 s) update (after 15 s)	Do not send. Send update telegram immediately or with delay.
Response when the block is set	Ignore block no response as with input $=1$ as with input $=0$	The block function is ineffective with this telegram. Do not respond when the block is set. Respond as with rising edge. Respond as with falling edge.
Response when the block is cancelled	no response update	Do not respond when the block is cancelled. Send update telegram.

6.9 Parameters for direct control of the blind actuator

(i)

The parameter Control channel C1 (C2) directly determines whether the input functions as a direct control for C1 or purely as a KNX binary input.
Channels I1 and I2 are configured for direct control of the actuator in the ETS default setting.
A button connected to 11 will therefore have a direct internal effect on channel C1, a button or switch at I2 affects C2.
(1) If the operation of the blinds requires 2 buttons (operation up/down), i.e. 2 inputs, then 12 will be automatically configured for direct control.
(1) If the operation of the blinds requires only one button (one button operation), then input 12 is freely available as a KNX binary input.

If an input is configured for direct control, it has no bus connection, i.e. no communication objects.

6.9.1 I1 blind actuator directly: Configuration options

Designation	Values	Description
Channel function	Switch.. Button.. Dimming.. Blinds.. Window contact	A direct control of the blind actuator (C1) is only possible with the blinds function.
Control channel C1 directly ${ }^{56}$	yes	I1 is used exclusively as a button input for blind actuator channel C1. I1 is connected to C1 internally and has no communication objects. I2 will be integrated automatically, if required.
Input is used purely as a KNX		
binary input.		
There is no internal connection to		
the switch actuator.		

[^15]
theben

Designation	Values	Description
Debounce time ${ }^{57}$	$30 \mathrm{~ms}, 50 \mathrm{~ms}, 80 \mathrm{~ms}$ $100 \mathrm{~ms}, 200 \mathrm{~ms}$, $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$	In order to avoid disruptive switching due to bouncing of the contact connected to the input, the new status of the input is only accepted after a delay time. Larger values ($\geq 1 \mathrm{~s}$) can be used as a switch-on delay
Long button push starting at ${ }^{58}$	$\begin{aligned} & 300 \mathrm{~ms}, 400 \mathrm{~ms} \\ & 500 \mathrm{~ms}, 600 \mathrm{~ms} \\ & 700 \mathrm{~ms}, 800 \mathrm{~ms} \\ & 900 \mathrm{~ms}, 1 \mathrm{~s} \end{aligned}$	Serves to clearly differentiate between long and short button push. If the button is pressed for at least as long as the set time, then a long button push will be registered.
Double-click additional function	по yes	No double-click function The double-click parameter page is shown.
Time for double-click ${ }^{59}$	$\begin{aligned} & 300 \mathrm{~ms}, 400 \mathrm{~ms} \\ & 500 \mathrm{~ms}, 600 \mathrm{~ms} \\ & 700 \mathrm{~ms}, 800 \mathrm{~ms} \\ & 900 \mathrm{~ms}, 1 \mathrm{~s} \end{aligned}$	Serves to differentiate between a double-click and 2 single clicks. Time period in which the second click must begin, in order to recognise a double-click.

[^16]
theben

6.9.1.1 I1 blinds directly parameter page

Designation	Values	Description
Operation		The input distinguishes between a long and a short button push, and can thus carry out 2 functions.
	One button operation	The blinds are operated with a single button. Short button push = step. Long button push = move.
		(i) 12 is not required, and freely available
	DOWN	Short button push = step. Long button push = lower.
		(i) 12 is automatically preallocated with operation $=U P$.
	UP	Short button push = step. Long button push = raise.
		(i) 12 is automatically preallocated with operation $=$ DOWN.
Movement is stopped by	Releasing the button Short operation	How is the stop command to be triggered?

6.9.1.2 Double-click parameter page

Designation	Values	Description
Height	$0-100 \%$	Required blind height
Slat	$0-100 \%$	Required slat position.

6.9.2 12 blinds directly

This parameter page is shown if 12 is required for direct control.
This is the case if, on the Blinds input 11 directly parameter page, the parameter Operation is set to UP or DOWN, and therefore a second button is required for the opposite direction
(i) If the blinds are operated with only one button (one button operation), then input I2 is freely available as a KNX binary input.

Designation	Values	Description
Operation	DOWN	Presetting if the direction is set to UP at IT. Presetting if the direction is set to DOWN at IT.
Double-click additional function	no	No double-click function The double-click parameter page is shown.
Height	yes	Required blind height
Slat	$0-100 \%$	Required slat position.

(i) The following settings are taken over from I1, and do not have to be entered again at I2: debounce time, long button push from, time for double-click.

6.10 Parameters for direct control of the switch actuator

The parameter Control channel C1 (C2) directly determines whether the input functions as a direct control for C1 (C2) or purely as a KNX binary input. Channels I1 and I2 are configured for direct control of the actuator in the ETS default setting.

A button or switch connected to 11 will therefore have a direct internal effect on channel C1, a button or switch at I2 affects C2.
 communication objects.

6.10.1 Control switch actuator directly, switch function

Designation	Values	Description
Function	Switch.. Button.. Dimmming... Blinds...	Direct control of the switch actuator (C1/C2) is only possible with the switch or button functions.
Control channel C1 directly ${ }^{60}$	yes	Input is used exclusively for switch actuator channel C1 (or C2). I1 is connected to C1 internally (or I2 to C2) and has no communication objects.
Debounce time	No	Input is used purely as a KNX binary input. There is no internal connection to the switch actuator.
	$100 \mathrm{~ms}, 50 \mathrm{~ms}, 200 \mathrm{~ms}$, $1 \mathrm{~ms} 5 \mathrm{~s}, 10 \mathrm{~s}$	In order to avoid disruptive switching due to bouncing of the contact connected to the input, the new status of the input is only accepted after a delay time. Larger values ($\geq 1 \mathrm{~s}$) can be used as a switch-on delay.

[^17]
6.10.1.1 Direct switching parameter page

This page replaces the switch object 1, 2 parameter pages.

Designation	Values	Description
Switching status if input = 1	On Off Change over	Switching status if voltage is present at the input?
Switching status if input = 0	on off Change over	Switching status if no voltage is present at the input?

6.10.2 Control switch actuator directly, button function

Designation	Values	Description
Function	Switch.. Button.. Dimming... Blinds..	Direct control of the switch actuator (C1/C2) is only possible with the switch or button functions.
Control channel C1 directly ${ }^{61}$	yes No	Input is used exclusively for switch actuator channel C1 (or C2). I1 is connected to C1 internally (or I2 to C2) and has no communication objects. Input is used purely as a KNX binary input. There is no internal connection to the switch actuator.
Debounce time	$30 \mathrm{~ms}, 50 \mathrm{~ms}, 80 \mathrm{~ms}$ $100 \mathrm{~ms}, 200 \mathrm{~ms}$, $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$	In order to avoid disruptive switching due to bouncing of the contact connected to the input, the new status of the input is only accepted after a delay time. Larger values ($\geq 1 \mathrm{~s}$) can be used as a switch-on delay
Connected button	NO contact NC contact	Set the type of connected contact.
Long button push starting at	$\begin{aligned} & 300 \mathrm{~ms}, 400 \mathrm{~ms} \\ & 500 \mathrm{~ms}, 600 \mathrm{~ms} \\ & 700 \mathrm{~ms}, 800 \mathrm{~ms} \\ & 900 \mathrm{~ms}, 1 \mathrm{~s} \end{aligned}$	Serves to clearly differentiate between long and short button push. If the button is pressed for at least as long as the set time, then a long button push will be registered.
Time for double-click	$\begin{aligned} & 300 \mathrm{~ms}, 400 \mathrm{~ms} \\ & 500 \mathrm{~ms}, 600 \mathrm{~ms} \\ & 700 \mathrm{~ms}, 800 \mathrm{~ms} \\ & 900 \mathrm{~ms}, 1 \mathrm{~s} \end{aligned}$	Serves to differentiate between a double-click and 2 single clicks. Time period in which the second click must begin, in order to recognise a double-click.

${ }^{61}$ Direct control: This parameter is only available for the switch or button function.

6.10.2.1 Direct switching parameter page

This page replaces the switch object 1, 2 parameter pages.

Designation	Values	Description
Response after short operation	No response Switching	Execute a switch command after a short button push?
Switching status	On Off Change over	Switching status.
Response after long operation	No response Switching	Execute a switch command after a long button push?
Switching status	Off Change over	Switching status. Response after double- click
No response Switching	Execute a switch command after a double-click?	

7 Application examples - blind actuator

7.1 Blind actuator direct control: Basic configuration

In this configuration, the blind actuator is operated directly with the buttons connected to 11 and 12.

7.1.1 Devices

- JU 1 (4942550)

7.1.2 Overview

7.1.3 Objects and links

The communication objects of C1 are all available for further functions.
A basic function (blinds up/down, step/stop) is provided via actuation of inputs I1 and I2.
In this case, the external inputs 11 and I 2 have no communication objects.

7.1.4 Important parameter settings

Standard or customer-defined parameter settings apply for unlisted parameters.

JU 1:

Parameter page	Parameter	Setting
General	Usage	1-channel blind actuator
	Use binary inputs	Yes
External inputs		
11, I2 configuration options	Function	Blinds
	Control channel C1 directly	yes
Blinds directly I1	Operation	Up
Blinds directly I2	Operation	Down ${ }^{62}$

${ }^{62}$ Not adjustable, will be adjusted automatically.

7.2 Controlling the blind actuator via the bus

In this example, the external inputs and the blind actuator channel are completely separate from each other and can only be used via the KNX bus. ${ }^{63}$

The blind actuator channel of the JU 1 is operated by means of a KNX button interface (TA 2 S). The automatic sun function is implemented by the Meteodata 140 S weather station.
In case of a wind alarm, the drive will be moved up.
The external inputs I1, I2 control a further KNX switch actuator (RM 4 U).

7.2.1 Devices

- JU 1 (4942550)
- TA 2 S (4969222)
- RM4U(4940223)
- Meteodata 140 S weather station (1409207)

7.2.2 Overview

[^18]
theben

7.2.3 Objects and links

No.	JU 1	No.	RM 4 U	Comment
	Object name		The external inputs control switch	
41	Channel I1.1 - switching	0	Channel C1 - switch object	actuator RM 4 U

No.	TA 2 S	No.	JU 1	Comment
	Object name		Object name	
1	Channel 11 step / stop	2	Channel C1 -	The step telegrams from both buttons of the button interface are sent to the same group address.
11	Channel 12 step / stop		step / stop	
2	$\begin{aligned} & \text { Channel l1 - } \\ & \text { up } \end{aligned}$	1	Up / down	The up and down telegrams of the button interface are sent to the same group address. .
12	Channel 12 down			

No.	Meteodata 140 S		No.	JU
	Object name			
20	C1.1 Universal channel - Switching	75	Central safety - wind 1	Wind alarm
60	C11 Drives up/down	1	Up / down	Controlled by automatic sun
61	C11 Blinds height	3	$\%$ height	
62	C11 Slat position	4	$\%$ slat	

theben

7.2.4 Important parameter settings

Standard or customer-defined parameter settings apply for unlisted parameters.

JU 1:

Parameter page	Parameter	Setting
General	Usage	1-channel blind actuator
	Use binary inputs	Yes
	Type of hanging	Blinds
Safety wind / rain / frost	Participation in safety wind	yes
	Source	Safety object 1 wind
	Start	Top end position
External inputs		
11, I2 configuration options	Function	Button
	Control channel C1, C2 directly	no
Button object 2	Object type	Switching
	Telegram	Change over
	Object type	Switching
	Telegram	Change over

RM 4 U:

Parameter page	Parameter	Setting
Configuration options	Channel function	Switch on/off
	Activation of function via	Switch object

TA 2 S :

Parameter page	Parameter	Setting
Channel 1 configuration options	Channel 1 function	Blinds
Blinds	Operation	Up
Channel 2 configuration options	Channel 2 function	Blinds
Blinds	Operation	Down

theben

Meteodata 140 S:

Parameter page	Parameter	Setting
General	Activate universal channel C1	Yes
	Activate sun protection channel C11	Yes
	Channel function	Wind sensor
Objects	Wind speed	Above $4 \mathrm{~m} / \mathrm{s}^{64}$
	Telegram type C1.1	Switch command
	If the condition is met	Send cyclically
	Telegram	On
	If the condition is not met	Send cyclically
	Telegram	Off
C11 protection channel	Channel controls	Blinds
Automatic sun function	Activation of automatic sun function	Via dimming threshold

7.3 Blind actuator with ventilation function

The ventilation function moves the blinds or overrule the blinds automatically into a predefined position ${ }^{65}$, as soon as the window is tilted or opened.

In order to distinguish between tilted and open, the window must be equipped with 2 contacts. The combined switching status of both contacts (at I1 and I2) enables the detection of the current window setting.

Here, the following configuration is assumed:

	Window contact 1		Window contact 2	
	Status ${ }^{66}$	Telegram 67	Status ${ }^{68}$	Telegram 69
Window tilted	open	Off	closed	On
Window open	closed	On	closed	On

Inputs 11 and I 2 send the status of the window contacts via the bus to the objects window contact 1 and 2 of blind actuator C1.

The blind actuator is operated by means of a KNX button interface (TA 2 S).

7.3.1 Devices

- JU 1 (4942550)
- TA 2 S (4969222)

7.3.2 Overview

[^19]
7.3.3 Objects and links

No.	JU 1	No.	JU 1	Comment
	Object name		Object name	
41	Channel 11.1 switching	24	Channel C1 window contact 1	11 is connected with the first window contact object of the blind actuator via an own group address.
51	Channel 12.1 switching	25	Channel C1 window contact 2	12 is connected with the second window contact object of the blind actuator via an own group address.

No.	TA 2 S	No.	JU 1	Comment
	Object name		Object name	
1	Channel 11 step / stop	2	Channel C1 step / stop	The step telegrams from both buttons of the button interface are sent to the same group address. .
11	Channel 12 step / stop			
2	$\begin{aligned} & \text { Channel I1 } \\ & \text { - up } \end{aligned}$	1	Up / down	The up and down telegrams of the button interface are sent to the same group address. .
12	Channel 12 - down			

7.3.4 Important parameter settings

Standard or customer-defined parameter settings apply for unlisted parameters.

JU 1:

Parameter page	Parameter	Setting
General	Usage	1-channel blind actuator
	Use binary inputs	Yes
C1 configuration options	Type of hanging	Blinds
	Activate ventilation function	Yes
Ventilation ${ }^{70}$	When the window is tilted	
	Approach ventilation position	always
	Position	Preset 1
	When the window is open	
	Approach ventilation position	always
	Position	Preset 2
	When the window is closed	
	Position after end of ventilation	As before ventilation
Presets ${ }^{71}$	Preset 1	
	Height	0\%
	Slat	0\%
	Preset 2	
	Height	80\%
	Slat	0\%
Window contacts	Number of window contents for this window	2 contacts
	When the window is tilted	
	Status of object window contact 1	Off
	Status of object window contact 2	On
	When the window is open	
	Status of object window contact 1	On
	Status of object window contact 2	On
External inputs		
Configuration options 11, 12	Function	Window contact
	Control channel C1, C2 directly	по
Window contact 11	Telegram when contact closed	On
	Telegram when contact open	Off72
Window contact 12	Telegram when contact closed	On
	Telegram when contact open	Off73

70 These settings are user-specific. Here, values are only given as an example.
${ }^{71}$ These settings are user-specific. Here, values are only given as an example.
${ }^{72}$ Not adjustable, will be adjusted automatically.
${ }^{73}$ Not adjustable, will be adjusted automatically.

TA 2 S :

Parameter page	Parameter	Setting
Channel 1 configuration options	Channel 1 function	Blinds
Blinds	Operation	Up
Channel 2 configuration options	Channel 2 function	Blinds
Blinds	Operation	Down

8 Application examples - switch actuator

These application examples are designed to aid planning and are not to be considered an exhaustive list.
They can be extended and updated as required.

8.1 Direct control of switch actuator: Basic configuration

In this configuration, both switching channels are operated directly with buttons ${ }^{74}$ connected to 11 and 12.
Each time the button is pressed, the corresponding channel-relay is switched.

8.1.1 Devices

- JU 1 (4942550)

8.1.2 Overview

8.1.3 Objects and links

The communication objects of C1 and C2 are all available for further functions. A basic function (C1, C2 On/Off) is provided via actuation of inputs I 1 and I 2 .

In this case, the external inputs I 1 and I 2 have no communication objects.

[^20]
8.1.4 Important parameter settings

Standard or customer-defined parameter settings apply for unlisted parameters.

JU 1:

Parameter page	Parameter	Setting
General	Usage	2-channel switch actuator
	Use binary inputs	Yes
Configuration options C1,C2	点	Channel function
External inputs	Switch on/off76	
11, I2 configuration options	Function	Button ${ }^{77}$
	Control channel C1 directly	yes
Direct switching	Response after short operation	Switching
	Switching status	Change over

[^21]
8.2 Controlling switch actuator channels via the bus

In this example, the external inputs and the switch actuator channels are completely separate from each other and can only be used via the KNX bus. ${ }^{78}$

The switch actuator channels of the JU 1 are operated by means of a KNX button interface (TA 2 S).
The external inputs I1, I2 control a further KNX switch actuator (RM 4 U).

8.2.1 Devices

- JU 1 (4942550)
- TA 2 S (4969222)
- RM 4 U (4940223)

8.2.2 Overview

[^22]
8.2.3 Objects and links

No.	JU 1	No.	RM 4 U	Comment
	Object name			
41	Channel I1.1 - switching	0	Channel C1 - switch object	The external inputs control switch actuator RM 4 U
51	Channel I2.1 - switching	10	Channel C2 - switch object	

No.	TA 2 S	No.	JU 1	Comment
	Object name		Object name	
1	Channel I1.1 - switching	1	Channel C1 - switch object	The button interface controls the
11	Channel I2.1 - switching	21	Channel C2 - switch object	switching channels C1 and C2.

theben

8.2.4 Important parameter settings

Standard or customer-defined parameter settings apply for unlisted parameters.

JU 1:

Parameter page	Parameter	Setting
General	Usage	2-channel switch actuator
	Use binary inputs	Yes
	Channel function	any
External inputs		
11, I2 configuration options	Function	Button
	Control channel C1, C2 directly	no
Button object 1	Object type	Switching
	Telegram	Change over
Button object 2	Object type	Switching
	Telegram	Change over

RM 4 U:

Parameter page	Parameter	Setting
Configuration options C1, C2	Channel function	Switch on/off
	Activation of function via	Switch object

TA 2 S :

Parameter page	Parameter	Setting
Channel 1 configuration options	Channel 1 function	Button
Button object 1	Object type	Switching (1 bit)
	Send after short operation	Send telegram
	Value	Change over
Channel 2 configuration options	Channel 2 function	Button
Button object 1	Object type	Switching (1 bit)
	Send after short operation	Send telegram
	Value	Change over

8.3 Switch actuator channels with and without direct control

In this example, bus and direct control are flexibly combined with each other:

- $\quad 11$ is configured as a pure KNX binary input, and it controls a dimming actuator.
- $\quad 12$ is connected directly with C2 internally.
- $\quad \mathrm{C} 1$ is exclusively controlled via the bus.
- C2 can be operated directly via a button at I2, as well as via bus telegrams, at the same time.

Both switch actuator channels of the JU 1 are operated by means of a KNX button interface (TA 2 S).

8.3.1 Devices

- JU 1 (4942550)
- TA 2 S (4969222)
- DM 2 T(4940270)

8.3.2 Overview

8.3.3 Objects and links

No.	JU 1		DM 2 T	Comment
	Object name		The external input I1 controls the	
41	Channel I1 - switching	0	Channel C1 - switching On/Off	dimming actuator DM 2 T.
42	Channel I1 - brighter / darker	1	Channel C1 - brighter/darker	

No.	TA 2 S	No.	JU 1	Comment
	Object name		Object name	
1	Channel I1.1 - switching	1	Channel C1 - switch object	The first channel of button interface TA 2 S is controlled by C1.
11	Channel I2.1- switching	21	Channel C2 - switch object	The second channel of button interface TA 2 S is controlled by C2. Independently, C2 can also be operated with the button at the external input I2 of the JU 1.

theben

8.3.4 Important parameter settings

Standard or customer-defined parameter settings apply for unlisted parameters.

JU 1:

Parameter page	Parameter	Setting
General	Usage	2-channel switch actuator
	Use binary inputs	Yes
	Channel function	any
External inputs		
11 configuration options	Function	Dimming
	Control channel C1 directly	no
Dimming	Response to long/short	One button operation
I2 configuration options	Function	Button
	Control channel C2 directly	yes
Direct switching79	Response after short operation	Switching
	Switching status	Change over

TA 2 S:

Parameter page	Parameter	Setting
Channel 1 configuration options	Channel 1 function	Button
Button object 1	Object type	Switching (1 bit)
	Send after short operation	Send telegram
	Value	Change over
Channel 2 configuration options	Channel 2 function	Button
Button object 1	Object type	Switching (1 bit)
	Send after short operation	Send telegram
	Value	Change over

DM 2 T:

No specific configuration required.
This device can be configured with the standard or customer-defined parameter settings.

9 Appendix

9.1 General information about KNX RF

As with KNX TP, KNX RF also distinguishes between Standard and Easy mode.
The standard mode is called "KNX RF1.R S mode". The carrier frequency is 868.3 MHz . This relatively low frequency offers excellent signal propagation compared to higher frequencies (Bluetooth: 2.4 GHz or WLAN: $2.4 / 5 \mathrm{GHz}$) and a good balance between power consumption and range. The range in the free field is up to 100 m . Inside buildings, the range depends on structural factors and conditions.
The structural conditions and distances between the radio products must already be taken into account when planning the electrical installation. The radio signals are mainly dampened by e.g. concrete components with steel reinforcement or metal components. The more dampening components between transmitter and receiver and the greater the distance, the more critical for the radio communication. For a system with TP and RF lines, the placement of the media coupler must be planned as much in the center as possible.
Furthermore, the frequency range used by KNX RF is not exclusively available to KNX. This means other radio systems might also be in a building and influence the KNX RF communication (e.g. garage door drives, alarm systems, weather stations, etc.).

Other devices, such as ballasts and lamps, can also be potential sources of interference for KNX RF systems due to the emission of electromagnetic waves.
The ETS app KNX RF Field Strength Analyzer from Tapko Technologies GmbH shows the receiving field strength of selected KNX RF products and can support start-up and troubleshooting.

In ETS 5, the "RF" transmission medium can be selected for a line. The KNX RF products are included in this line. For each line with "RF" medium, the ETS generates a unique domain address. The KNX RF products added in the RF line are assigned to this domain address. This ensures that pieces of information from neighbouring KNX RF lines will not influence each other. Only devices with the same domain address communicate with each other. The domain address is automatically transmitted by the ETS when programming the KNX RF products. An RF line can have a maximum of 256 devices (addresses 0...255). If the system consists of several RF lines or a combination of TP and RF media, the first device in the RF line is always a media coupler with the physical address x.x. 0 (e.g. 1.2.0). The media coupler transmits the information across lines via the TP medium. KNX RF products are easy to recognise in the ETS product catalogue due to the specific radio symbol.

9.2 The scenes

9.2.1 Principle

The current status of a channel, or of a complete device, can be stored and retrieved later at any time via the scene function.

Each channel can participate simultaneously in up to 8 scenes.
Scene numbers 1 to 64 are permitted.
Permission to participate in scenes must be granted for the relevant channel via parameter. See Activate scenes parameter and Scenes parameter page.

The current status is allocated to the appropriate scene number when a scene is saved.
The previously saved status is restored when a scene number is called up.
This allows a device to be easily integrated into any chosen user scene.
The scenes are permanently stored and remain intact even after the application has been downloaded again.
See "All channel scene statuses" parameter on the Scenes parameter page.

theben

9.2.2 Calling up or saving scenes:

To call up or save a scene, the relevant code is sent to the corresponding scene object.

Scenario	Call up		Save	
	Hex.	Dec.	Hex.	Dec.
1	\$00	0	\$80	128
2	\$01	1	\$81	129
3	\$02	2	\$82	130
4	\$03	3	\$83	131
5	\$04	4	\$84	132
6	\$05	5	\$85	133
7	\$06	6	\$86	134
8	\$07	7	\$87	135
9	\$08	8	\$88	136
10	\$09	9	\$89	137
11	\$0A	10	\$8A	138
12	\$0B	11	\$8B	139
13	\$0C	12	\$8C	140
14	\$0D	13	\$8D	141
15	\$0E	14	\$8E	142
16	\$0F	15	\$8F	143
17	\$10	16	\$90	144
18	\$11	17	\$91	145
19	\$12	18	\$92	146
20	\$13	19	\$93	147
21	\$14	20	\$94	148
22	\$15	21	\$95	149
23	\$16	22	\$96	150
24	\$17	23	\$97	151
25	\$18	24	\$98	152
26	\$19	25	\$99	153
27	\$1A	26	\$9A	154
28	\$1B	27	\$9B	155
29	\$1C	28	\$9C	156
30	\$1D	29	\$9D	157
31	\$1E	30	\$9E	158
32	\$1F	31	\$9F	159
33	\$20	32	\$AO	160
34	\$21	33	\$A1	161
35	\$22	34	\$A2	162
36	\$23	35	\$A3	163
37	\$24	36	\$A4	164
38	\$25	37	\$A5	165
39	\$26	38	\$A6	166
40	\$27	39	\$A7	167
41	\$28	40	\$A8	168
42	\$29	41	\$A9	169
43	\$2A	42	\$AA	170
44	\$2B	43	\$AB	171
45	\$2C	44	\$AC	172
46	\$2D	45	\$AD	173
47	\$2E	46	\$AE	174

Scenario	Call up		Save	
	Hex.	Dec.	Hex.	Dec.
48	$\$ 2 F$	47	$\$ A F$	175
49	$\$ 30$	48	$\$ B 0$	176
50	$\$ 31$	49	$\$ B 1$	177
51	$\$ 32$	50	$\$ B 2$	178
52	$\$ 33$	51	$\$ B 3$	179
53	$\$ 34$	52	$\$ B 4$	180
54	$\$ 35$	53	$\$ B 5$	181
55	$\$ 36$	54	$\$ B 6$	182
56	$\$ 37$	55	$\$ B 7$	183
57	$\$ 38$	56	$\$ B 8$	184
58	$\$ 39$	57	$\$ B 9$	185
59	$\$ 3 A$	58	$\$ B A$	186
60	$\$ 3 B$	59	$\$ B B$	187
61	$\$ 3 C$	60	$\$ B C$	188
62	$\$ 3 D$	61	$\$ B D$	189
63	$\$ 3 E$	62	$\$ B E$	190
64	$\$ 3 F$	63	$\$ B F$	191

Examples (central or channel-related):
Call up status of scene 5 :
\rightarrow Send \$04 to the relevant scene object.
Save current status with scene 5 :
\rightarrow Send $\$ 84$ to the relevant scene object.

9.2.3 Teaching in scenes without telegrams

Instead of defining scenes individually by telegram, this can be done in advance in the ETS. This merely requires the All channel scene statuses parameter (Scenes parameter page) to be set to Overwrite on download.

The required status can then be selected for each of the 8 possible scene numbers in a channel (= Status after download parameter).
After the download, the scenes are already programmed into the device.
Later changes via teach-in telegrams are possible if required and can be permitted or blocked via a parameter.

9.3 Conversion of percentages to hexadecimal and decimal values

Percentage value	$\mathbf{0 \%}$	$\mathbf{1 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{3 0 \%}$	$\mathbf{4 0 \%}$	$\mathbf{5 0 \%}$	$\mathbf{6 0 \%}$	$\mathbf{7 0 \%}$	$\mathbf{8 0 \%}$	$\mathbf{9 0 \%}$	$\mathbf{1 0 0 \%}$
Hexadecimal	00	1 A	33	4 D	66	80	99	B3	CC	E6	FF
Decimal	00	26	51	77	102	128	153	179	204	230	255

All values from 00 to FF hex. (0 to 255 dec .) are valid.

[^0]: ${ }^{1}$ see parameter Use on parameter page General.

[^1]: ${ }^{7}$ Upon double-click with object type $=$ height $\%+$ slat $\%$
 ${ }^{8}$ Upon double-click with object type $=$ height $\%+$ slat $\%$

[^2]: ${ }^{9}$ or only
 ${ }^{10}$ Thus, the window status can be received either via the own inputs 11,12 , or from other bus sharing units (binary input, button interface, etc.).

[^3]: ${ }^{11}$ Also in the case of direct control: button/switch at I1

[^4]: ${ }^{17}$ For type of hanging $=$ Roller blinds / awning / general drive
 ${ }^{18}$ For type of hanging $=$ blinds

[^5]: ${ }^{19}$ Parameter page Sun protection
 ${ }^{20}$ Window open or tilted
 21 Termination by closing the window or blocking.
 ${ }^{22}$ The parameter Position after end of ventilation is not taken into account.
 ${ }^{23}$ Parameter page Sun protection: Parameter Behaviour when heating support is not required any longer or Behaviour when cooling support is not required any longer.

[^6]: 24 Here, the parameter Response after return to automatic operation is not taken into account.
 25 The parameter Position after end of ventilation is not taken into account any longer.
 ${ }^{26}$ Parameter page Sun protection
 27 Window open or tilted
 28 Termination by closing the window or blocking.
 29 The parameter Position after end of ventilation is not taken into account.
 ${ }^{30}$ Parameter page Sun protection: Parameter Behaviour when heating support is not required any longer or Behaviour when cooling support is not required any longer.

[^7]: ${ }^{35}$ Only JU 1
 ${ }^{36}$ In this case, the movement is finished by the drive itself, when reaching the end position
 37 JU 1 RF: Mains restoration

[^8]: 42 JU 1 RF: Mains restoration

[^9]: ${ }^{43}$ Direct control of C1 possible.
 44 Direct control of C1 possible.

[^10]: 46 JU 1 RF: Mains restoration

[^11]: 47 JU 1 RF: Mains restoration

[^12]: 48 JU 1 RF: Mains restoration

[^13]: ${ }^{49}$ Only available for 12
 ${ }^{50}$ Only available for 12

[^14]: ${ }^{54}$ In this way, window contact inputs I 1 and I 2 can be used for C 1 , as well as for other bus sharing units, blind actuators (displays etc.).

[^15]: ${ }^{56}$ Direct control: This parameter is only available at I1 and only for the blinds function.

[^16]: ${ }^{57}$ Applies here to I1, and for I2 if used.
 ${ }^{58}$ Applies here to I1, and for 12 if used.
 ${ }^{59}$ Applies here to I1, and for 12 if used.

[^17]: ${ }^{60}$ Direct control: This parameter is only available for the switch or button function.

[^18]: ${ }^{63}$ Normal KNX operation, without direct control.

[^19]: 65 The desired position is set on the Presets parameter page.
 ${ }^{66}$ Actual switching status of the window contact
 ${ }^{67}$ Telegram which is sent from an external input.
 ${ }^{68}$ Actual switching status of the window contact
 ${ }^{69}$ Telegram which is sent from an external input.

[^20]: ${ }^{74}$ Direct control is also possible with a switch, depending on the application.

[^21]: 75 The remaining parameters on the Configuration options page are only relevant in conjunction with communication objects and are not considered in any more detail here.
 ${ }^{76}$ Included here as an example. All other functions can also be used.
 ${ }^{77}$ Direct control is also possible with a switch, depending on the application.

[^22]: ${ }^{78}$ Normal KNX operation, without direct control.

