

KNX manual HMT 6 S / HMT 12 S heating actuator

4900373

4900374

theben

Contents

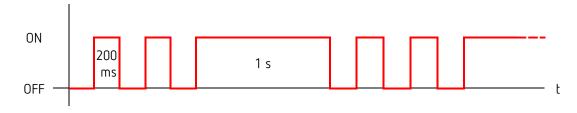
1	Funct	ion description	3		
2	Opera	ation	4		
	2.1	Flashing behaviour in manual mode:	5		
3	Techr	nical data	6		
4	The H	IMT 6 S / HMT 12 S application program	7		
	4.1	Selection in the product database	7		
	4.2	Overview of communication objects	8		
	4.3	Description of communication objects	10		
	4.4	Parameter pages overview	15		
	4.5	General parameters	16		
	4.6	Parameters for the heating actuator	17		
	4.7	Parameters for the heating controller	23		
	4.8	Common parameters	38		
5	Typical applications				
	5.1	Simple control with one channel as heating actuator	41		
	5.2	Simple control with one channel as heating controller	44		
	5.3	Mixed system with radiators, underfloor heating and 2 supply			
	pump	DS	47		
	5.4	Important parameter settings	50		
6	Арре	ndix	51		
	6.1	Determining the current operation mode	51		
	6.2	Priorities for operating mode selection	52		
	6.3	Base setpoint and current setpoint	53		
	6.4	Determination of the setpoint	54		
	6.5	Setpoint offset	56		
	6.6	Dead zone	56		
	6.7	Valve protection	57		
	6.8	Short-circuit and overcurrent shutdown	57		
	6.9	Determining the maximum actuating value	58		
	6.10	PWM cycle	59		
	6.11	Setpoint calculation	61		

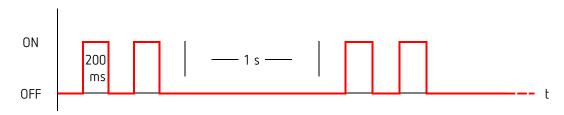
theben

1 Function description

- Heating actuator for controlling thermal actuators, switching 24 V DC or permanently $0\!-\!10$ V DC
- Integration of up to 2 heating circuit pumps for integrating boiler control
- Flow temperature adjustment to meet requirements: Automatic calculation of the maximum actuating value for adjustment of the flow temperature to actual requirements
- No KNX room thermostat needed: Flexible use of each channel as a heating actuator or heating controller
- Can be installed directly in the heating circuit distributor
- Screwless terminal technology
- Integrated power supply for max. 12 thermal actuators
- Silent semiconductor switch
- Continuous or switching actuating value selectable

2 Operation


Designation	Function	Description
PWR	24 V - LED	LED lights green if 24 V available, flashes red in
		case of an error.
Phys. addr.	Button and LED for	For ETS programming.
	programming the physical	
	address.	
man.	Button and LED for manual operation	Starting manual mode: Short press of the button, the yellow LED lights up, bus communication is blocked. Channel 1 is selected first, and the corresponding LED flashes. After channel 6 or 12, the output of the pump relay follows. See below, flashing behaviour in manual mode.
		Each subsequent press on the man. button selects the next output (H1H6/12, pump, H1). A long press on the man. button finishes manual mode: Then, all channels are controlled again according to their parameters settings and bus telegrams.
0-10 V	Button with double function:1. Changing the output status.2. Changing the type of valve control	 Only in manual mode: A short press of the button changes the status of the selected output (toggle On / Off). A long press of the button changes the mode of the output from 24 V switching to 0-10 V, and vice versa. The LED lights up blue if the selected channel is in 0-10 V mode.
Pump	Pump LED	Shows the pump relay status.
H1-H12	Channel LEDs	Shows the status of the outputs.


2.1 Flashing behaviour in manual mode:

In manual mode, the switching status of the channels is displayed after a short double flash.

Output is switched off (inactive)

3 Technical data

KNX operating voltage	Bus voltage, I _{Bus} ≤ 7.5 mA
Operating voltage	230–240 V AC
Frequency	50-60 Hz
Standby output	< 1 W
Drives	1 per channel (HMT 12 S) 2 per channel (HMT 6 S)
Valve output	24 V SELV; 0.4 A peak; 0.12 A permanent or 0-10 V at at least 1250 ohm
Switch output (pump)	5 A, 240 V AC floating, μ contact
24 V output terminal	Max. 1.4 A
Max. wire cross-sections	0.2 – 1.5 mm²
Ambient temperature	−5 °C +50 °C
Type of installation	DIN-rail
Protection rating	IP 20 in accordance with EN 60529
Protection class	II in accordance with EN 60730-1 subject to designated installation

 \bigcirc Comment concerning the installed 24 V power unit:

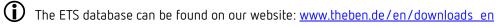
The 24 V output terminal supplies the operating voltage for 0-10 V valves, which are connected to the device.

The current available at this terminal is reduced if thermal actuators (24 V switching) are connected at the same time.¹

In order to reduce the inrush peaks typical for thermal actuators, the power unit can supply 2.7 A for a short time.

The power unit is inherently short-circuit proof and over temperature resistant. However, a permanent operation outside the specified characteristics can reduce the service life of the device.

 $^{^{1}}$ The available current is reduced by approx. 0.1 A per connected 24 V/2 W actuator.



4 The HMT 6 S / HMT 12 S application program

4.1 Selection in the product database

Manufacturer	Theben AG
Product family	Heating, ventilation, air conditioning
Product type	Heating actuators
Program name	HMT 6 S, HMT 12 S

Number of communication objects	92 ² , 176 ³
Number of group addresses	254
Number of associations	255

² HMT 6 S ³ HMT 12 S

4.2 Overview of communication objects

4.2.1 Channel-related objects

No.	Object name	Function	Length	R	W	С	Т	DPT
1	Channel H1	Base setpoint	2 bytes	R	W	С	I	9.001
1	Channel H1	Continuous actuating value	1 byte	R	W	С	-	5.001
1		Switching actuating value	1 bit	R	W	С	-	1.001
2	Channel H1	Manual setpoint offset	2 bytes	R	W	С	-	9.002
3	Channel H1	Actual value	2 bytes	R	W	С	-	9.001
4	Channel H1	Operating mode preset	1 byte	R	W	С	-	20,102
4		Current actuating value	1 byte	R	-	С	Т	5.001
5	Channel H1	Presence	1 bit	R	W	С	-	1.018
6	Channel H1	Window setting	1 bit	R	W	С	-	1.019
7	Channel H1	Current operating mode	1 byte	R	-	С	Т	20,102
8	Channel H1	Heating and cooling actuating value	1 byte	R	-	С	Т	5.001
		Heating actuating value	1 byte	R	-	С	Т	5.001
9	Channel H1	Cooling actuating value	1 byte	R	-	С	Т	5.001
	Channel H1	Heating = 0, cooling = 1	1 bit	R	W	С	1	1.001
10		Heating = 1, cooling = 0	1 bit	R	W	С	-	1.100
11	Channel H1	current setpoint	2 bytes	R	W	С	Т	9.001
12	Changel 111	Report actual value failure	1 bit	R	-	С	Т	1.005
12	Channel H1	Report actuating value failure	1 bit	R	-	С	Т	1.005
13	Channel H1	Forced operation	1 bit	R	W	С	-	1.003
14	Channel H1	Overcurrent/short circuit	1 bit	R	-	С	Т	1.005

4.2.2 Common objects

No.	Object name	Function	Length	R	W	С	Т	DPT
241	H1 - H12	Summer mode ON/OFF	1 bit	R	W	С	-	1.003
242	H1 - H12	Highest actuating value	1 byte	R	-	С	Т	5.001
244	H1 - H12	Pump ON/OFF	1 bit	R	-	С	Т	1.001
245	H1 - H12	Pump relay status	1 bit	R	-	С	Т	1.001
246	H1 - H12	Outside temperature	2 bytes	R	W	С	-	9.001
247	H1 - H12	Outside temperature failure	1 bit	R	1	С	Т	1.005
248	H1 - H12	Manual	1 bit	R	W	С	Т	1.001
249	Software version of bus coupling unit	Send	14 bytes	R	I	С	Т	16.001
250	Software version of firmware	Send	14 bytes	R	-	С	Т	16.001

4.3 Description of communication objects

4.3.1 Objects for the heating actuator function

Object 1 "Continuous actuating value, switching actuating value"

The actuating value receives data from the room thermostat for the corresponding valve. It can either be continuous (0-100%) or switching (0N/OFF) depending on the configuration.

Objects 2-3 Not used.

Object 4 "Current actuating value"

Reports the actual value of the actuating value generated for the channel.

Objects 5-11 Not used.

Object 12 "Report actuating value loss"

Present only if, on the Configuration options parameter page, the parameter Monitor the actuating value = yes.

If monitoring is selected, the room thermostat must receive an actuating value telegram regularly.

Recommendation: To ensure trouble-free operation, the cyclical transmission time to the room thermostat should be no longer than half the monitoring time.

Example: Monitoring time 30 min, cyclical transmission time to thermostat less than or equal to 15 min.

If no new actuating value is received within the configured monitoring time, failure of the room thermostat is assumed and an emergency program is started. See *emergency program* parameter page.

This function can be selected or deactivated individually for each channel. The monitoring time is set jointly for all channels on the *monitoring* page.

4.3.2 Objects for the heating controller function

Object 1 "Base setpoint"

The base setpoint is first specified via the application at start-up and stored in the *base setpoint* object.

It can be reset at any time using *base setpoint* object (limited by minimum or maximum valid setpoint).

The object can be written to without restriction.

Object 2 "Manual setpoint offset"

Offsetting set temperature: The object receives a temperature difference as DPT 9.002. The desired room temperature (current setpoint) can be adjusted against the base setpoint by this difference. The following applies in comfort mode (heating): Current setpoint = base setpoint + manual setpoint offset

Values beyond the configured range (maximum or minimum valid setpoint on the *setpoints* parameter page) are limited to the highest or lowest value.

Note:

The offset always refers to the set base setpoint and not to the current setpoint. See also: *Determination of the setpoint*

Object 3 "Actual value"

Receives the current room temperature for the control.

Object 4 "Operating mode preset"

byte object. Can be used to directly activate one of 4 operating modes.
 Comfort, 2 = Standby, 3 = Night,
 Frost protection (heat protection)
 If another value is received (0 or >4), comfort operating mode is activated.
 The details in brackets refer to cooling mode.

Object 5 "Presence"

The status of a presence detector (e.g. push button, motion detector) can be received via this object.

1 on this object activates comfort operating mode.

Object 6 "Window setting"

The status of a window contact can be received via this object. 1 on this object activates frost/heat protection operating mode.

Object 7: "Current operating mode"

Transmits the current operating mode as a 1 byte value (see table). The transmission behaviour can be set on the *operating mode* parameter page.

Value	Operating mode
1	Comfort
2	Standby
3	Night
4	Frost protection/heat protection

Object 8 "Heating actuating value, heating and cooling actuating value"

Sends the current heating actuating value (0...100%), or heating or cooling if the Output of cooling actuating value parameter has been set to Together with heating actuating value.

Object 9 "Cooling actuating value"

Sends the cooling actuating value or switch command to control a cooling surface, fan coil unit etc.

The send format DPT 5.001 or DPT 1.001 depends on the selected Type of control (continuous or switching) on the *cooling control* page.

(i) The object is not available:

- With the setting Heating control only (*settings* parameter page), as cooling function is not available.

- If Changeover between heating and cooling = via object is selected and Output of cooling actuating value is set to Together with heating actuating value (cooling control parameter page).

Object 10 "Heating/cooling"

This object is used in 2-pipe heating/cooling systems or if automatic change over between heating and cooling is not desired.

The telegram format can be set on the *cooling control* parameter page:

Parameter: Format object heating/cooling	Telegram format
DPT1.100	Heating = 1, cooling = 0
Inverted	Heating = 0, cooling = 1

Object 11 "Current setpoint"

Sends the current temperature setpoint as DPT 9.001.

Object 12 "Actual value failure"

Sends a 1 if no valid actual value was received during the monitoring time.

Object 13 "Forced operation"

The direction of action of the force telegram is adjustable. Standard:

1 = activate force

0 =end force.

After reset, the last status of forced operation will be restored.

After download, forced operation is always deactivated.

Object 14 "Overcurrent/short circuit"

Reports overload, short circuit, or defect at output. 1 = Error 0 = No error

4.3.3 Common objects

Object 241 "Summer mode ON/OFF"

When 1 is set for the object, all channels configured for it are switched over to summer mode, and heating no longer takes place.

During summer mode, a valve protection program can also be executed optionally.

Object 242 "Highest actuating value"

The actuating values for the channels are continuously compared with each other and only the currently highest value is sent to this object.

The current heat requirement of the system is thus constantly reported to the heating boiler, which then adapts its output to the actual requirement.

Whether a channel is taken into account for determining the highest actuating value can be selected individually for each channel. For example, insignificant rooms can be ignored for the heat requirement.

Object 243 Not used.

Object 244 "Pump ON/OFF"

Control of the supply pump. This object is used jointly for all channels. Whether a channel is taken into account for pump control can be selected individually for each channel.

This object is independent of the pump relay in the device.

Object 245 "Pump relay status" Reports the current switching status of the pump relays.

Object 246 "Outside temperature" Receives the outside temperature.

Object 247 "Outside temperature failure"

0 = No error

1 = Error: Outside temperature can no longer be received.

Object 248 "Manual"

Puts the device in manual mode or sends the status of manual mode.

Telegram	Meaning	Explanation				
0	Auto	All channels can be operated via the bus as well as via the buttons.				
1	Manual	The channels can only be operated via the buttons on the device. Bus telegrams will not work.				

The duration of manual mode, i.e. the *function of the manual button* is adjustable on the *general* parameter page.

After manual operation has been cancelled, already received bus events will not be executed again.

The "Manual" state will be reset in the event of a mains failure.

Object 249

For diagnostic purposes only.

Sends the software version of the bus coupling unit after reset or download. Can also be read out directly via the ETS.

The version is issued as an ASCII character string. Format: V x.y.z

Code	e Meaning				
x Main version					
y Sub version					
Z	Revision				

Object 250 "Firmware version"

For diagnostic purposes only.

Sends the firmware versions of the device software after reset or download. Can also be read out directly via the ETS.

The version is issued as an ASCII character string. Format: Bxxx Vyyy Vzzz

Code	Meaning			
XXX	xxx Version of the bootloader			
ууу	Version of channels 1-3 (HMT6S) or 1-6 (HMT12S)			
ZZZ	Version of channels 4-6 (HMT6S) or 7-12 (HMT12S)			

If the object is not sent after a bus reset, maybe there is no mains voltage present.

4.4 Parameter pages overview

The device consists	of one genera	hlock and h	main functional	hlocks
	of one yenera	ai Diuck aliu 4		DIUCKS.

Parameter page	Description
General	LED settings, activation of the temperature sensor inputs.
Channel H1, H2H12	
Configuration options	Selection as heating controller/heating actuator and activation of additional functions.
Channel	Parameters for actuator control.
characteristics	
Settings	Standard/user-defined control.
Operating mode	Operating mode after reset, presence sensor etc.
Heating control	Control parameters, installation type etc. for heating mode.
Heating setpoints	Base setpoint, lowering, frost protection etc.
Cooling control	Control parameters, installation type etc. for cooling mode.
Cooling setpoints	Dead zone, standby, heat protection etc.
Emergency program	Response to failure of actuating value or actual value.
Force	Response in forced operation.
Monitoring	
Actuating value,	Settings of the monitoring function.
actual value, outside	
temperature	
Pump control	
Relay	Settings for pump control via the integrated relay.
Object	Settings for pump control via object Pump On/Off

4.5 General parameters

Designation	Values	Description
Device type	HMT 6 S HMT 12 S	Selection between 6 and 12 channel device
Function of the manual button	applies for 24 hours or until reset via object blocked	Determines how long the device works manually and how this is ended.
	applies until reset via object applies for 30 minutes or until reset via object applies for 1 hour or until reset via object applies for 2 hours or until reset via object applies for 4 hours or until reset via object applies for 8 hours or until reset via object applies for 12 hours or until reset via object	In manual mode, the channels can only be switched on and off via the buttons on the device. See also: <u>Object Manual</u>
Manual operation of the channels	enabled	The channels can be operated via the buttons on the device.
	blocked	No manual operation, the buttons on the device are blocked.
Send highest actuating value ⁴ cyclically (if	no, only in the event of change	Do not send cyclically.
continuous actuating value is used)	in the event of change and cyclically	Send in the event of change (ON-OFF, OFF- ON) and cyclically.
Cycle time	every 2 min, every 3 min every 5 min, every 10 min, every 15 min, every 20 min, every 30 min	At what interval should the highest actuating value be sent?

⁴ See in the Appendix: Highest actuating value

4.6 Parameters for the heating actuator

4.6.1 Configuration options

Designation	Values	Description
Channel function		Should the channel be used as
		an actuator or controller?
	Heating actuator	The channel receives its
	-	actuating value from an external
		room thermostat.
	Heating controller	The channel receives the room
		temperature over the bus and
		generates the actuating value
		independently by means of an
		internal controller.
		See chapter: Parameters for the
Tura of a shushing working		heating actuator
Type of actuating value	awitatia a	The channel processes:
	switching	ON/OFF telegrams.
	continuous	Percent telegrams 0-100%
Include in summer mode	No	Should the channel remain off in
	Yes	summer mode?
Activate valve protection		This function prevents the valve
,		from seizing and is executed if
		the valve position has not
		changed for 7 days. When this
		function is executed, the valve is
		moved to the opposite position
		for 6 minutes.⁵
	No	No volvo ocobactico
	NO	No valve protection.
	Yes	Valve protection is active.
Monitor actuating value	No	Should be monitored whether the
	Yes	room thermostat regularly
		transmits an actuating value?
		In this way, a thermostat
		malfunction will be detected
		quickly and an emergency
		program will be started.
Activate force function	No	No force function.
	Yes	Opens the Force parameter page.
	165	opens the role parameter paye.

⁵ Valve protection is not included in the calculation of the current actuating value.

4.6.2 Channel characteristics

Designation	Values	Description
Type of valve control	Switch output	For standard 24 V actuators.
	0-10 V	For actuators with 0-10 V
		control.
Actuator direction of operation	Standard: 1 (or 10 V) =	Standard.
	Open valve	Valve closed when de-
		energised.
	Inverted: 0 (or 0 V)	Special inverted valve types.
Output wellage at 00/6	= Open valve	Valve open when de-energised.
Output voltage at 0%6	0 V	Standard use.
	1 V	For special applications:
	2 V	Here, the voltage range can
		have a lower limit.
Output voltage at 100%7	3 V, 3.5 V, 4 V	For special applications:
	4.5 V, 5 V, 5.5 V	Here, the voltage range can
	6 V, 6.5 V, 7 V	have an upper limit.
	7.5 V, 8 V, 8.5 V 9 V, 9.5 V	
	<i>9 V, 9.5 V</i>	
	10 V	Standard use.
Minimum actuating value	0% , 5%, 10%, 20%,	Lowest permissible actuating
	30%	value
Maximum actuating value	50%, 60%, 70%, 80%,	Highest permissible actuating
	90% , 100%	value. A maximum value of 90%
		extends the service life of
		thermal actuators.
		A maximum value of 100%
		reduces the number of
		switching cycles.
Actuating value when		Restriction when a room
value violates the min./max.		thermostat receives an
actuating value		actuating value that is less than
_		the minimum actuating value:

 $^{^{\}rm 6}$ Parameter for 0-10 V valve control. With inverted direction of action, the output voltage is set to 100%, here.

 $^{^{7}}$ Parameter for 0-10 V valve control. With inverted direction of action, the output voltage is set to 0%, here.

Designation	Values	Description
	0% or 100%	Actuate channel with 0% or 100%
	Use set actuating values	Restrict values to maximum and minimum actuating value. For example, maintaining a minimum actuating value of 10% can be practical for the correct base temperature of an underfloor heating.
	0 = 0%, otherwise use set actuating values	If the received actuating value is = 0, accept this value and close the valve. Other values are restricted according to the configured minimum and maximum actuating value: Received values > 0% and < min. actuating value are replaced by the minimum actuating value. In the same way, values > max. actuating value are replaced by the set maximum actuating value.
	< min. actuating val. = 0%, otherwise scale.	Actuating values below the minimum actuating value are executed at 0%. Values above are scaled in proportion to the range between min. actuating value and 100%.
Send current actuating value	at change of 1%, 2%, 3%, 5% , 7%, 10%, 15%	After what percentage change ⁸ in the actuating value is the new value to be transmitted?
Send current actuating value cyclically	not cyclically, only in the event of change, every 2 min, every 3 min every 5 min, every 10 min, every 15 min, every 20 min, every 30 min, every 45 min, every 60 min	Send when or at what interval?
Take channel into account for highest actuating value	No Yes	Should the actuating value for channel 1 be included for determining the highest actuating value of all channels?

⁸ Change since last transmission.

Designation	Values	Description
Control pump	No	Do not take channel for pump control into account
	via object	Channel controls a pump via bus
	via relay	Channel controls the locally connected pump
	via object and relay	Channel controls both.
Time for one actuation cycle ⁹ (PWM period)	2 min 3 min 5 min 7 min 10 min 15 min 20 min 30 min	 With "continuous" actuating value. One actuation cycle comprises one ON and one OFF process and forms a PWM period. Examples: Actuating value 20%, Time = 10 min means: switched on for 2 min during the actuating cycle of 10 min (i.e. 20% of actuating cycle) and
		switched off for 8 min. - Actuating value = 70%, time = 10 min means: 7 min on / 3 min off. See Appendix: PWM cycle

 $^{^{9}}$ Also applies to emergency program and forced operation.

4.6.3 Emergency program

Designation	Values	Description
Actuating value for emergency	fixed	The valve is continuously
program is		energised by a fixed actuating
		value.
		See below: Fixed emergency
		program in winter mode.
	Outside temperature	Energy saving setting:
	dependent	The valve is energised
		depending on the outside
		temperature and only opened if
		it is really necessary.
Actuating value for emergency program is fixed		
Fixed emergency program in	0%, 10%, 20%	Fixed actuating value that
winter mode	30%, 40%, 50%	should replace the actuating
		value of the thermostat until it
		is available again.
Actuating value for emergency program is <i>temperature-dependent</i>		
Emergency program active	5 °C	If the outside temperature
when outside temperature	10 °C	drops below the set value, the
below	15 °C	valve opens.
Max. actuating value in	10%, 20%	What should be the maximum
emergency program	30%, 40% , 50%	heating level in the emergency
		program?
Fixed emergency program in	0%, 10%, 20%	Fixed valve setting if neither
case of failure of outside	30%, 40%, 50%	actuating value nor outside
temperature.		temperature can be received.

Also here, the setting on the parameter page *Channel characteristics* applies to the PWM period.

4.6.4 Force

Designation	Values	Description
Actuating value in the forced operation	0% to 100% in increments of 10%	Fixed actuating value to control the valve in forced operation. This is not restricted by the minimum or the maximum
Forced tologram	1 Facco (abaadaad)	actuating value.
Forced telegram	1 = Force (standard)	Forced operation is activated with an ON telegram.
	0 = Force	Inverted: Forced operation is activated with an OFF telegram.

4.6.5 Monitoring of actuating value, actual value, outside temperature

See below: Common parameters.

4.6.6 Pump control

See below: Common parameters.

4.7 Parameters for the heating controller

4.7.1 Configuration options

Designation	Values	Description
Channel function		Should the channel be used as
		an actuator or controller?
	Heating actuator	The channel receives its
		actuating value from an external
		room thermostat.
	Heating controller	The channel receives the room
		temperature over the bus and
		generates the actuating value
		independently by means of an
		internal controller.
		See chapter: Parameters for the
		heating actuator
Include in summer mode	No	Should the channel remain off in
	Yes	summer mode?
Activate valve protection		This function prevents the valve
		from seizing and is executed if
		the valve position has not
		changed for 7 days. When this
		function is executed, the valve is
		moved to the opposite position
		for 6 minutes.
	No	No valve protection.
	Yes	Valve protection is active.
Execute valve protection		This function prevents the valve
		from seizing and is executed if
		the valve position has not
		changed for 7 days. When this
		function is executed, the valve is
		moved to the opposite position
		for 6 minutes.
	always	Valve protection is permitted at
	-	any time.
	Only in comfort mode	Valve protection is permitted only
	Only in standby mode	during the operating mode
	Only in night mode	selected here.
Monitor actual value	No	No monitoring.
	Yes	The actual value (room
	Tes	temperature) is monitored and
		an emergency program can be
		configured.
Activate force function	No	No force function.
	Yes	Activates the Force parameter
		page.

4.7.2 Channel characteristics

Designation	Values	Description
Type of valve control	Switch output	For standard 24 V actuators.
	0-10 V	For actuators with 0-10 V
		control.
Actuator direction of operation	Standard: 1 (or	Standard.
	10 V) = Open valve	Valve closed when de-energised.
	Inverted: 0 (or 0 V)	Special inverted valve types.
	= Open valve	Valve open when de-energised.
Output voltage at 0% ¹⁰	0 V	Standard use.
	1 V	For special applications:
	2 V	Here, the voltage range can have
		a lower limit.
<i>Output voltage at 100%¹¹</i>	3 V, 3.5 V, 4 V	For special applications:
	4.5 V, 5 V, 5.5 V 6 V, 6.5 V, 7 V	Here, the voltage range can have an upper limit.
	7.5 V, 8 V, 8.5 V	
	9 V, 9.5 V	
	10 V	Standard use.
Channel processes actuating	Heating	Channel responds to the heating
value for ¹²		actuating value
	Cooling	Channel responds to the cooling
	g	actuating value
Minimum actuating value	0% , 5%, 10%, 20%,	Lowest permissible actuating
	30%	value
Maximum actuating value	50%, 60%, 70%, 80%, 90% , 100%	Highest permissible actuating value.
	3070 , 10070	A maximum value of 90%
		extends the service life of
		thermal actuators.
		A maximum value of 100%
		reduces the number of switching
		cycles

 $^{^{\}rm 10}$ Parameter for 0-10 V valve control. With inverted direction of action, the output voltage is set to 100%, here.

 $^{^{11}}$ Parameter for 0-10 V valve control. With inverted direction of action, the output voltage is set to 0%, here.

¹² Only for heating and cooling mode. Not available if *Output of cooling actuating value = together with heating actuating value*.

Designation	Values	Description
Actuating value when		Restriction when a room
value violates the min./max.		thermostat receives an actuating
actuating value		value that is less than the
		minimum actuating value:
		5
	0% or 100%	Actuate channel with 0% or 100%
	Use set actuating values	Restrict values to maximum and minimum actuating value. For example, maintaining a minimum actuating value of 10% can be practical for the correct base temperature of an underfloor heating.
	0 = 0%, otherwise use set actuating values	If the received actuating value is = 0, accept this value and close the valve. Other values are restricted according to the configured minimum and maximum actuating value: Received values > 0% and < min. actuating value are replaced by the minimum actuating value. In the same way, values > max. actuating value are replaced by the set maximum actuating value.
	< min. actuating val. = 0%, otherwise scale.	Actuating values below the minimum actuating value are executed at 0%. Values above are scaled in proportion to the range between min. actuating value and 100%.
Take channel into account for	No	Should the actuating value for
highest actuating value	Yes	this channel be included for
		determining the highest
		actuating value of all channels?
	No	Do not take channel for pump
Control pump		control into account.
	via object	Channel controls a pump via bus.
	via relay	Channel controls the locally connected pump.
	via object and relay	Channel controls both.

Designation	Values	Description
Time for one actuation cycle (PWM period) ¹³	2 min 3 min 5 min 7 min 10 min 15 min 20 min 30 min	 With "continuous" actuating value. An actuation cycle consists of a switch-on and a switch-off process and forms a PWM period. Examples: Actuating value 20%, Time = 10 min means: switched on for 2 min during the actuating cycle of 10 min (i.e. 20% of actuating cycle) and switched off for 8 min. Actuating value = 70%, time = 10 min means: 7 min on / 3 min off. See Appendix: PWM cycle

If the actuating value is limited by the parameters *Minimum* or *Maximum Actuating Value*, then these limitations are only effective on the outputs.

The objects send the actuating value that was actually requested by the controller. **Example:**

Minimum actuating value 30%

Maximum actuating value 60%

Current heating actuating value e.g. 80%: The outputs are limited to 60%.

80% will be sent to the bus.

This behaviour applies to the switching as well as to the 0-10 V outputs.

¹³ Also applies to emergency program and forced operation.

4.7.3 Settings

Designation	Values	Description
Control	Standard	For simple applications (only heating control).
	User-defined	Enables selection of control functions.
Control functions used ¹⁴	only heating control	Heating mode only.
	Heating and cooling	In addition, a cooling system has to be controlled.

¹⁴ Only for user-defined control.

4.7.4 Operating mode

Designation	Values	Description
Operating mode after reset	Frost protection Temperature reduction at night Standby	Operating mode after start-up or reprogramming
	Comfort	
Type of presence sensor		The presence sensor activates the comfort operating mode
	Presence detectors	Comfort operating mode as long as the presence object is set.
	Presence button	If the operation mode object is called up again after setting the presence object, the new operating mode will be accepted and the state of the presence object ignored. If the presence object is set during night/frost mode, it is reset after the configured comfort extension has expired ¹⁵ (see below). The presence object is not reported back on the bus
Comfort extension by presence button in night mode	попе	Telegrams from the presence button are not considered.
	30 min 1 hour 1.5 hours 2 hours 2.5 hours 3 hours 3.5 hours	Party switching: This allows the controller to change from night/frost mode to comfort mode for a limited time by means of the presence object. The time limit is omitted if the device was previously in standby mode.
		Comfort mode is only cleared with the next manual or bus controlled change of the operation mode.

 $^{^{15}}$ Exception: If a window is opened (window object = 1), the room thermostat switches to frost protection mode

Designation	Values	Description
Cycl. transmission of current operating mode	not cyclical, only in the event of change every 2 min, every 3 min every 5 min, every 10 min every 15 min, every 20 min every 30 min, every 45 min every 60 min	How often should the current operating mode be sent?

4.7.5 Control (heating)

Designation	Values	Description
Setting the control parameters	via installation type	Standard application
	user-defined	Professional use: Configure P/Pl controller yourself
Installation type	Radiator heating system	PI controller with: Integrated time = 90 minutes Bandwidth = 2.5 K
	Underfloor heating	Integrated time = 30 h Bandwidth = 4 K
transmission of heating actuating value	at change by 1% at change by 2% at change by 3% at change by 5% at change by 7% at change by 10% at change by 15%	After what percentage change ¹⁶ in the actuating value is the new value to be transmitted. Small values increase control accuracy, but also the bus load.
Cycl. transmission of heating actuating value	not cyclical, only in the event of change every 2 min, every 3 min every 5 min, every 10 min every 15 min, every 20 min every 30 min, every 45 min every 60 min,	How often is the current heating actuating value to be sent (regardless of changes)?
	User-defined parameter	
Proportional band of heating controller	1 K, 1.5 K, 2 K, 2.5 K, 3 K 3.5 K, 4 K, 4.5 K 5 K, 5.5 K, 6 K 6.5 K, 7 K, 7.5 K 8 K, 8.5 K	Professional setting for adapting the control response to the room. Small values cause large changes in actuating values, larger values cause finer actuating value adjustment.
Integrated time of the heating controller	pure P controller 15 min, 30 min, 45 min 60 min, 75 min, 90 min 105 min, 120 min, 135 min, 150 min, 165 min, 180 min 195 min, 210 min 4 h, 5 h, 10 h, 15 h, 20 h, 25 h, 30 h, 35 h	The integrated time determines the response time of the control. It establishes the increase by which the output actuating value is raised in addition to the P share. The I share remains active for as long as there is a control deviation. The I share is added to the P share.

¹⁶ Change since last transmission



4.7.6 Setpoints (heating)

Designation	Values	Description
Base setpoint after loading the	18 °C, 19 °C, 20 °C	Output setpoint for temperature
application	21 °C , 22 °C, 23 °C,	control.
	24 °C, 25 °C	
Minimum valid base setpoint	5 °C, 6 °C, 7 °C, 8 °C,	If a received base setpoint (base
	9 °C, 10 °C , 11 °C, 12 °C,	setpoint object) is lower than
	13 °C, 14 °C, 15 °C,16 °C	the value set here, it will be
	17 °C, 18 °C, 19 °C, 20 °C	limited to this value.
Maximum valid base setpoint	20 °C, 21 °C, 22 °C	If a received base setpoint (base
'	23 °C, 24 °C, 25 °C	setpoint object) is higher than
	27 °C, 30 °C, 32 °C	the value set here, it will be
	-,	limited to this value.
Reduction in standby mode	0.5 K, 1 K, 1.5 K	Example: With a base setpoint
(during heating)	2 K, 2.5 K, 3 K	value of 21°C in heating
(comg needing)	3.5 K, 4 K	operation and a
		reduction of 2 K,
		the device controls with a
		setpoint of $21 - 2 = 19$ °C.
Reduction in night mode	3 K, 4 K, 5 K	By what value should the
(during heating)	6 K, 7 K, 8 K	temperature be reduced in night
(comg neering)		mode?
Setpoint for frost protection	3 °C, 4 °C, 5 °C	Preset temperature for frost
mode (during heating)	6 °C, 7 °C, 8 °C	protection mode in heating
mode (doring needing)	9 °C, 10 °C	mode
	5 0,10 0	(Heat protection applies in
		cooling mode).
Maximum valid setpoint offset	+/- 1 K, +/- 2 K, +/- 3 K,	Limits the possible setting
	+/-4 K, +/-5 K	range for the setpoint offset
		function.
		Applies to values received via
		Manual setpoint value offset
		object.
Setpoint offset applies	only in comfort mode	The setpoint offset:
		is only considered in the
	with comfort and standby	selected modes, and is
	mode	ineffective in all other modes.
	with comfort, standby	
	and night mode	
current setpoint in comfort		Feedback of current setpoint via
mode		the bus:

Designation	Values	Description
	Sends actual value (heating < > cooling)	the setpoint actually being used for control has always to be sent (= current setpoint). Example with base setpoint of 21 °C and dead zone of 2 K: During heating, 21 °C is sent, and during cooling, base setpoint + dead zone is sent (21 °C + 2 K = 23 °C)
	Send average value between heating and cooling	Same value in comfort mode during both heating and cooling mode, i.e.: Base setpoint + half dead zone is sent, to prevent occupants from being confused. Example with base setpoint of 21 °C and dead zone of 2 K: Mean value = 21°+1 K =22 °C Although control takes place at 21 °C or 23 °C
cycl. transmission of current setpoint		How often should the currently valid setpoint be sent?
	not cyclically, only in the event of change	Only send in the event of a change.
	every 2 min every 3 min every 5 min every 10 min every 15 min every 20 min every 30 min every 45 min every 60 min	Send cyclically

4.7.7 Cooling control


Designation	Values	Description
Setting the control parameters	via installation type	Standard application
	user-defined	Professional use: Configure P/PI controller yourself
Installation type	Cooling surface	PI controller with: Integrated time = 240 minutes Bandwidth = 5 K
	Fan coil unit	Integrated time = 180 minutes Bandwidth = 4 K
	Jser-defined control paramete	er
Proportional band of the cooling controller	1 K, 1.5 K, 2 K, 2.5 K, 3 K 3.5 K, 4 K , 4.5 K 5 K, 5.5 K, 6 K 6.5 K, 7 K, 7.5 K 8 K, 8.5 K	Professional setting for adapting the control response to the room. Large values cause finer changes to the actuating value with the same control deviation and more precise control than smaller values.
Integrated time of the cooling controller	pure P controller	See in the Appendix temperature control
	pure P controller 15 min, 30 min, 45 min 60 min, 75 min, 90 min 105 min, 120 min, 135 min, 150 min, 165 min, 180 min 195 min, 210 min 4 h, 5 h, 10 h, 15 h, 20 h, 25 h, 30 h, 35 h	Only for PI controller: The integrated time determines the response time of the control. It establishes the increase by which the output actuating value is raised in addition to the P share. The I share remains active for as long as there is a control deviation. The I share is added to the P share.
Sends cooling actuating value	at change by 1% at change by 2% at change by 3% at change by 5% at change by 7% at change by 10% at change by 15%	After what percentage change ¹⁷ in the actuating value is the new value to be transmitted. Small values increase the control accuracy, but also the bus load.

¹⁷ Change since last transmission.

theben

Designation	Values	Description
Cycl. Sends cooling actuating value	not cyclical, only in the event of change every 2 min, every 3 min every 5 min, every 10 min every 15 min, every 20 min every 30 min, every 45 min every 60 min	How often is the current cooling actuating value to be sent (regardless of changes)?
Switchover between heating and cooling	automatic via object	The controller automatically switches to cooling mode if the actual temperature is above the setpoint. The cooling mode can only be activated on the bus via object (heating =/cooling =). Cooling mode remains off, as long as this object is not set.
Format object heating/cooling	DPT1.100 (heating=1/cooling=0) inverted (heating=0/cooling=1)	Standard format. Compatible with RAM 713 S, VARIA etc.
Output of the cooling actuating value ¹⁸	on separate object	For 4-pipe systems: The actuating values for heating and cooling are sent separately by means of 2 objects.
	together with heating actuating value	For 2-pipe systems: The actuating value is always sent to the <i>actuating value</i> <i>heating/cooling</i> object, independent of whether heating or cooling mode is active.

¹⁸ Only when changeover between heating and cooling via object.

4.7.8 Cooling setpoints

Designation	Values	Description
Dead zone between heating and	(О К) ¹⁹	Specifies the buffer zone
cooling	1 K	between setpoints for heating
	2 K	and cooling mode.
	3 K	The dead zone is expanded
	4 K	through hysteresis in switching
	5 K	(2 point) control.
	6 K	See glossary: dead zone
Increase in standby mode	0 K, 0.5 K, 1 K, 1.5 K	The standby temperature is
(during cooling)	2 K, 2.5 K, 3 K	increased in cooling mode
	3.5 K, 4 K, 5 K	
Increase in night mode (during	3 K, 4 K, 5 K	See increase in standby mode
cooling)	6 K, 7 K, 8 K	
Setpoint for heat protection	42 °C (i.e. virtually no	Heat protection represents the
mode (during cooling)	heat protection)	maximum permitted
	29 °C, 30 °C, 31 °C	temperature for the controlled
	32 °C, 33 °C, 34 °C	room. It performs the same
	35 °C	function during cooling as frost
		protection mode during heating,
		e.g. saves energy while
		prohibiting non-permitted
		temperatures.

 $^{^{19}}$ 0 K: Only for 2-pipe systems, i.e. parameter: switchover between heating and cooling = via object and output of cooling actuating value = together with heating actuating value.

4.7.9 Emergency program

Designation	Values	Description
Actuating value for emergency	fixed	The valve is continuously
program is		energised by a fixed actuating
		value.
		See below: Fixed emergency
		program in winter mode.
	Outside temperature	Energy saving setting:
	dependent	The valve is energised
		depending on the outside
		temperature and only opened if
		it is really necessary.
	g value for emergency progra	
Fixed emergency program in	0%, 10%, 20%	Fixed actuating value that
winter mode	30%, 40%, 50%	should replace the actuating
		value of the thermostat until it
		is available again.
	emergency program is <i>temp</i>	
Emergency program active	5 °C	If the outside temperature
when outside temperature	10 °C	drops below the set value, the
below	15 °C	valve opens.
Max. actuating value in	10%, 20%	What should be the maximum
emergency program	30%, 40% , 50%	heating level in the emergency
		program?
Fixed emergency program in	0%, 10%, 20%	Fixed valve setting if neither
case of failure of outside	30%, 40%, 50%	actuating value nor outside
temperature.		temperature can be received.

Also here, the setting on the parameter page *Channel characteristics* applies to the PWM period.

4.7.10 Force

Designation	Values	Description
Actuating value in the forced	0% to 100% in	Fixed actuating value to control
operation	increments of 10%	the valve in forced operation.
		This is not restricted by the
		minimum or the maximum
		actuating value.
Forced telegram	1 = Force (standard)	Forced operation is activated
		with an ON telegram.
	0 = Force	Inverted: Forced operation is
		activated with an OFF telegram.

4.7.11 Monitoring of actuating value, actual value, outside temperature

See below: Common parameters.

4.7.12 Pump control

See below: Common parameters.

4.8 Common parameters

These parameters apply to all controller and actuator channels.

4.8.1 Monitoring of actuating value, actual value, outside temperature

Designation	Values	Description
Monitoring time	5 min	Start emergency program if the
	10 min	relevant data were not received
	20 min	within the configured time.
	30 min	
	60 min	
Status of monitoring	Report only in the	Do not send any telegrams
	event of malfunction	during normal operation, only in the event of failure.
	Always report	Status will also be sent when there is no fault.
Send status cyclically	No Yes	Send status messages cyclically?
Cycle time	every 2 min	At what interval should the
	every 3 min	status be sent?
	every 5 min	
	every 10 min	
	every 15 min	
	every 20 min	
	every 30 min	

4.8.2 Pump control

A maximum of 2 pumps can be controlled:

One of them directly via the built-in relay, and the other one via pump object and suitable switch actuator.

The assigned pump can be defined individually for each channel (*Control pump* parameter). In this way, the pumps of 2 heating circuits can be controlled with one actuator.

Relay:

Designation	Values	Description
Only switch on relay when at least (only for switch output) ²⁰	one input variable > 0%	The pump relay is switched on as soon as the input variable of a channel is above 0%.
	a valve is really open	As above, however, the pump will always be switched off when, due to the PWM cycle, all valves are closed.
Switch-off delay	No switch-off delay	Switch off pump immediately
	2 min, 3 min, 5 min,	continue running for
	7 min, 10 min , 15 min, 20 min, 30 min	a set length of time.
Send relay status cyclically	no, only in the event of change	How should the current relay status be sent?
	in the event of change and cyclically	
Cycle time	every 2 min, every 3 min	At what interval should the
	every 5 min, every 10 min,	switch telegram for the pump be sent?
	every 15 min, every	Sent:
	20 min,	
	every 30 min	

²⁰ This parameter only applies to those channels which are configured with *type of valve control* = *switch output*. For channels controlling 0-10 V valves, this setting is not relevant.

theben

Object:

Designation	Values	Description
<i>Switch-on telegram only if at least</i> (only for switch output) ²¹	one input variable > 0%	The pump object sends switch- on telegrams as soon as the input variable of a channel is above 0%.
	a valve is really open	As above, however, the pump will always be switched off when, due to the PWM cycle, all valves are closed.
Switch-off delay	No switch-off delay	Switch off pump immediately
	2 min, 3 min, 5 min, 7 min, 10 min , 15 min, 20 min, 30 min	continue running for a set length of time.
Send pump control cyclically	no, only in the event of change	How should the current relay status be sent?
	in the event of change and cyclically	
Cycle time	every 2 min, every 3 min every 5 min, every 10 min, every 15 min, every 20 min, every 30 min	At what interval should the switch telegram for the pump be sent?

²¹ This parameter only applies to those channels which are configured with *type of valve control* = *switch output*. For channels controlling 0-10 V valves, this setting is not relevant.

theben

5 Typical applications

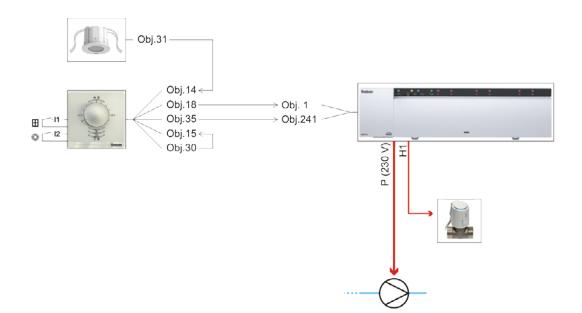
These typical applications are designed to aid planning and are not to be considered an exhaustive list.

It can be extended and updated as required.

For detailed comfort and control functions, the RAMSES 718 P KNX manual can be consulted.

5.1 Simple control with one channel as heating actuator

Channel H1 is configured as heating actuator.


Control is accomplished by a RAMSES 718 P room thermostat. Summer mode is triggered manually with a switch; presence and window status are sensed by a presence detector and a window contact.

For the window contact and the switch for summer/winter mode, 2 external inputs of the RAMSES 718 P are used.

5.1.1 Devices

- HMT 6 S (Order No. 4900373)
- RAMSES 718 P (Order No. 7189210)
- PlanoSpot 360 KNX (Order No. 2039101)

5.1.2 Overview

5.1.3 Objects and links

No.	PlanoSpot 360 Object name	No.	RAMSES 718 P Object name	Comment
31	Channel C4.1 - presence	14	Presence	Presence signal. Starts comfort mode.

Na	RAMSES 718 P	Na	HMT 6 S	Comment	
No.	Object name	No.	Object name		
18	Heating actuating value	1	Continuous actuating value	Actuating value for channel H1	
35	Channel I2.1 – switching	241	Summer mode ON/OFF	Changeover between summer/winter mode.	

No.	RAMSES 718 P Object name	No.	RAMSES 718 P Object name	Comment
30	Channel I1.1 switching	15	Window status	Connect status of window contact at I1 with RTC window status input object.

5.1.4 Important parameter settings

Standard or customer-defined parameter settings apply to unlisted parameters.

Pland	Spot	360
FIGIL	ισμοι	200

Parameter page	Parameter	Setting		
General Channel C4 function		active		
	Presence			
Channel C4 - presence - objects	Telegram type C4.1	Switch command		

RAMSES 718 P

Parameter page	Parameter	Setting
Parameter block RTC		
RTC setting	Control	Only heating control
Heating control	Type of control	continuous
Parameter block External input	ts	
Channel 1	Activate channel	On
	Channel function	Switch
Switch object 1	Object type	Switching (1 bit)
	Send if input = 1	Yes
	Telegram	On
	Send if input = 0	Yes
	Telegram	Off
Channel 2	Activate channel	On
	Channel function	Switch
Switch object 1	Object type	Switching (1 bit)
	Send if input = 1	Yes
	Telegram	On
	Send if input = 0	Yes
	Telegram	Off

HMT 6 S, channel H1

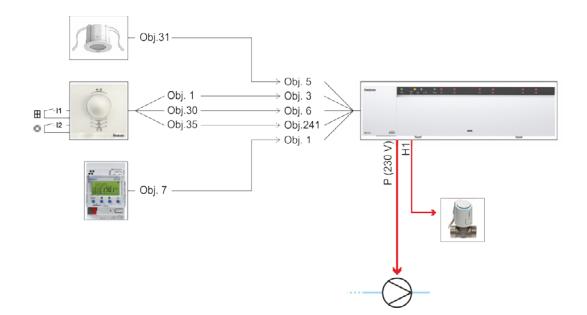
Parameter page	Parameter	Setting	
Configuration options	Channel function	Heating actuator	
	Type of actuating value	continuous	
Channel characteristics	Type of valve control	Switch output	
	Actuator direction of	Standard	
	operation		

theben

5.2 Simple control with one channel as heating controller

Channel H1 is configured as heating controller.

The channel is used as a heating actuator with integrated room thermostat and receives its temperature actual value from a RAMSES 718 S RTC. The setpoint is sent from a TR 648 top2 time switch.


Summer mode is triggered manually with a switch; presence and window status are sensed by a presence detector and a window contact.

For the window contact and the switch for summer/winter mode, 2 external inputs of the RAMSES 718 S are used.

5.2.1 Devices

- HMT 6 S (Order No. 4900373)
- RAMSES 718 S (Order No. 7189200)
- PlanoSpot 360 KNX (Order No. 2039101)
- TR 648 top2 RC-DCF (Order No. 6489210)

5.2.2 Overview

5.2.3 Objects and links

No.	PlanoSpot 360 Object name	No.	HMT 6 S Object name	Comment
31	Channel C4.1 - presence	5	Presence	Presence signal. Starts comfort mode.

No.	RAMSES 718 S	No.	HMT 6 S	Comment
NU.	Object name	NU.	Object name	Comment
1	Temperature value	3	Actual value	Current room temperature for the controller in H1.
30	Channel I1.1 - switching	6	Window setting	Status of window contact at I1 for the controller in H1.
35	Channel I2.1 – switching	241	Summer mode ON/OFF	Changeover between summer/winter mode.

No.	TR 648 top2	No	HMT 6 S	Comment	
NU.	Object name	No.	Object name	Comment	
7	C1.1 switching channel - Temperature in °C	1	Base setpoint value	Base setpoint value	

5.2.4 Important parameter settings

Standard or customer-defined parameter settings apply to unlisted parameters.

P	امدا	م٢٦	nt	360	
E I	an	υυμ	υυι	200	

Parameter page	Parameter	Setting			
General	Channel C4 function - Presence	active			
Channel C4 - presence - objects	Telegram type C4.1	Switch command			

RAMSES 718 S

Parameter page	Parameter	Setting			
Parameter block General					
Measurement values	Transmit temperature in the event of change of	0.3 K			
Parameter block External inputs					
Channel 1	Activate channel	On			
	Channel function	Switch			
Switch object 1	Object type	Switching (1 bit)			
	Send if input = 1	Yes			
	Telegram	On			
	Send if input = 0	Yes			
	Telegram	Off			
Channel 2	Activate channel	On			
	Channel function	Switch			
Switch object 1	Object type	Switching (1 bit)			
	Send if input = 1	Yes			
	Telegram	On			
	Send if input = 0	Yes			
	Telegram	Off			

HMT 6 S

1111 0 5		
Parameter page	Parameter	Setting
Configuration options	Channel function	Heating controller
Settings	Control	Standard
Channel characteristics	Type of valve control	Switch output
	Actuator direction of	Standard
	operation	

TR 648 top2

Parameter page	Parameter	Setting
Switching channel C1	Telegram type C1.1	Temperature [°C]
	When clock -> ON	20 °C
	When clock -> OFF	16 °C

5.3 Mixed system with radiators, underfloor heating and 2 supply pumps

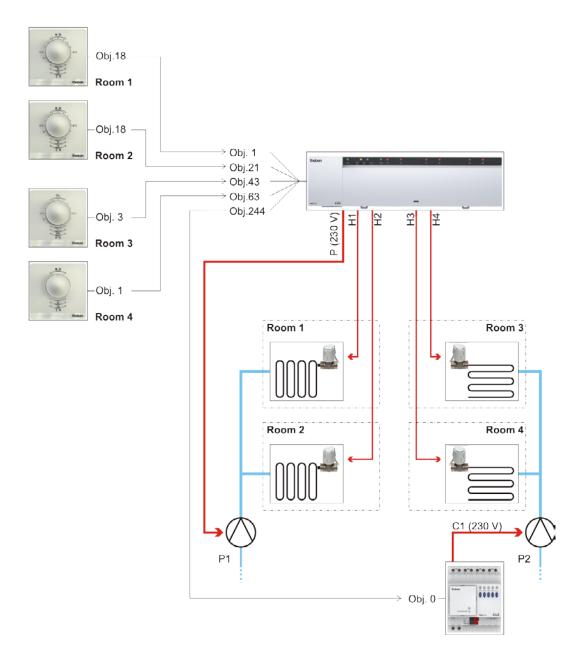
4 rooms have to be heated. To do so, the heating actuator controls always one Alpha 5 actuator via the 24 V outputs H1, H2, H3 and H4.

Rooms 1 and 2 are equipped with a radiator, rooms 3 and 4 with an underfloor heating.

Pump P1 (standard) is switched directly via the relay contact of the device. In order to optimally allow for the different requirements of a radiator and an underfloor heating, a second supply pump for the underfloor heating can be controlled, if desired. This one (P2) will be switched by telegram via a KNX switch actuator.

Channels H1 and H2 are configured as heating actuators and receive their actuating value each from one room thermostat RAMSES 718 P.

Channels H3 and H4 are used as heating actuators with integrated room thermostat and receive their temperature actual value from a CO2 sensor Amun 716 S (H3, room 3) and from a RTC RAMSES 718 S (H4, room 4).


For better clarity, functions as change of operating mode, summer mode and frost protection via window contact are not mentioned in this example.

5.3.1 Devices

- HMT 6 S (Order No. 4900373)
- RAMSES 718 P (Order No. 7189210)
- RAMSES 718 S (Order No. 7189200)
- AMUN 716 S (Order No. 7169230)
- RMG 4 U (Order No. 4930223)

5.3.2 Overview

5.3.3 Objects and links

No.	RAMSES 718 P Room 1	No.	HMT 6 S	Comment
	Object name		Object name	
18	Heating actuating value	1	Continuous actuating value	Heating actuating value for channel H1

No.	RAMSES 718 P Room 2	No.	HMT 6 S	Comment
	Object name		Object name	
18	Heating actuating value	21	Continuous actuating value	Heating actuating value for channel H2

No.	AMUN 716 S Room 3	No.	HMT 6 S	Comment
	Object name		Object name	
3	Temperature value	43	Actual value	Current room temperature for controller channel H3

No	RAMSES 718 S Room 4	No.	HMT 6 S	Comment
	Object name		Object name	
1	Temperature value	63	Actual value	Current room temperature for controller channel H4

No	HMT 6 S	Na	RMG 4 U	Commont
No.	Object name	No.	Object name	Comment
244	Pump ON/OFF	0	C1 switch object	Switch command for pump P2

5.4 Important parameter settings

Standard or customer-defined parameter settings apply to unlisted parameters.

RAMSES 718 P (room 1 and 2)

Parameter page (RTC)	Parameter	Setting
Setting	Control	Only heating control
Heating control	Type of control	continuous
	Number of heating	Only one heating stage
	stages	

HMT 6 S, channel H1 (for room 1) and H2 (for room 2)

Parameter page	Parameter	Setting
Configuration options	Channel function	Heating actuator
	Type of actuating value	continuous
Channel characteristics	Type of valve control	Switch output
	Actuator direction of	Standard
	operation	

AMUN 716 S (room 3) / RAMSES 718 S (room 4)

Parameter page	Parameter	Setting
Measurement values	Transmit temperature in	0.3 K
	the event of change of	

HMT 6 S, channel H3 (for room 3) and H4 (for room 4)

Parameter page	Parameter	Setting
Configuration options	Channel function	Heating controller
Settings	Control	Standard
Channel characteristics	Type of valve control	Switch output
	Actuator direction of	Standard
	operation	

theben

6 Appendix

6.1 Determining the current operation mode

The current setpoint can be adjusted to the relevant requirements by selecting the operating mode.

The operating mode can be specified via the objects *operating mode preset, presence,* and *window setting.*

The current operating mode can be specified as follows:

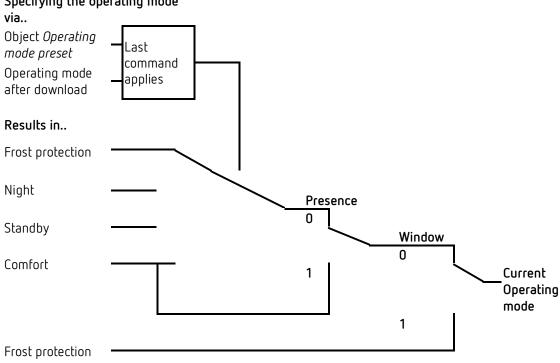
Object	Object Presence	Object Window setting	current operating mode
Operating mode preset			
any	any	1	Frost/heat protection
any	1	0	Comfort
Comfort	0	0	Comfort
Standby	0	0	Standby
Night	0	0	Night
Frost/heat protection	0	0	Frost/heat protection

theben

6.2 Priorities for operating mode selection

In principle the following applies: The last instruction overwrites the previous one.

(i) Exception: Frost mode via window contact has priority over all other operating modes.


Upon selection of the *presence button* parameter, the following also applies: If a new operating mode is received on the object with the presence object set (operating mode preset), it will be accepted and the presence object will be reset (only with presence button).

Reception of the same operating mode as prior to the presence status (e.g. via cycl. sending) is ignored.

If the presence object is set during night/frost mode, it will be reset after the configured comfort extension finishes.

If the presence object is set during standby mode, the comfort operating mode is accepted without time restriction.

Determining the operating mode when using a presence detector

Specifying the operating mode

theben

6.3 Base setpoint and current setpoint

The **base setpoint** is the standard temperature for comfort mode and the reference temperature for reduction in standby and night modes.

The programmed base setpoint (see *base setpoint after downloading the application*) is stored in object *base setpoint* and can be changed via the bus at any time.

The **current setpoint** is the setpoint that is actually used for control. It is the result of all the reductions or increases associated with the operating mode and control function.

Example:

At a base setpoint of 22 °C and a reduction in night mode of 4 K, the current setpoint (in night mode) is: 22 °C - 4 K = 18 °C.

During the day (in comfort mode), the current setpoint is 22 °C (provided that cooling mode is not active).

The current setpoint depends on the operating mode and on the selected control function.

If the setpoint, because of a setpoint offset, is outside the programmed values for frost and heat protection, it is restricted to these values by the safety limits.

6.4 Determination of the setpoint

6.4.1 Setpoint calculation in heating mode

Current set point during heating

Operating mode	Current setpoint
Comfort	Base setpoint +/- setpoint offset
Standby	Base setpoint +/- setpoint offset – reduction in standby mode
Night	Base setpoint +/- setpoint offset – reduction in night mode
Frost/heat protection	Configured setpoint for frost protection mode

Example:

Heating in comfort mode.

Parameter page	Parameter	Setting
Setpoints	Base setpoint after loading the application	21 °C
	Reduction in standby mode	2 K
	(during heating)	
	Maximum valid setpoint offset	+/-2K

The setpoint was previously increased by 1 K via object set point offset.

Calculation:

Current setpoint = base setpoint +/- setpoint offset = 21 °C + 1 K = 22 °C

If operation is switched to standby mode, the current setpoint is calculated as follows:

Current setpoint = base setpoint +/- setpoint offset – reduction in standby mode = 21 °C + 1 K - 2 K= 20 °C

6.4.2 Setpoint calculation in cooling mode

Current set point during cooling

Operating mode	Current setpoint
Comfort	Base setpoint + setpoint offset + dead zone
Chandhu	Base setpoint + setpoint offset + dead zone
Standby	+ increase in standby mode
Night	Base setpoint + setpoint offset + dead zone
	+ increase in night mode
Frost/heat protection	Configured setpoint for heat protection mode

Example:

Cooling in comfort mode.

The room temperature is too high, the controller has switched to cooling mode

Parameter page	Parameter	Setting
Setpoints	Base setpoint after loading the application	21 °C
	Maximum valid setpoint offset	+/-2K
	Dead zone between heating and cooling	2 K
Cooling setpoints	Increase in standby mode	2 K
	(during cooling)	

The setpoint was previously lowered via object setpoint offset by 1 K.

Calculation:

Current setpoint = base setpoint + setpoint offset + dead zone = 21 °C - 1 K + 2 K= 22 °C

Changing to standby mode causes a further increase of the setpoint (energy saving), which results in the following setpoint:

Setpoint = base setpoint + setpoint offset + dead zone + increase in standby mode = 21 °C - 1 K + 2 K + 2 K = 24 °C

6.5 Setpoint offset

The current setpoint can be adjusted via object *manual setpoint offset*. In this case, the setpoint is changed by sending the desired offset to the object. For this, the difference (may be preceded by a minus sign) is sent as DPT 9.002 to the object *manual setpoint offset*.

The offset limits are defined on the *setpoints* parameter page via the *Maximum valid setpoint offset* parameter.

The offset is always in relation to the Base setpoint and not to the current setpoint.

Example Base setpoint of 21 °C:

If a value of 2 is received by object *manual setpoint offset*, the new setpoint is calculated as follows:

21 °C + 2 K = 23 °C.

In order to afterwards bring the setpoint to 22 °C, the difference to the programmed base setpoint (here 21 °C) is resent, in this case 1 K (21 °C + 1 K = 22 °C)

6.6 Dead zone

The dead zone is a buffer area between heating and cooling mode. Within this dead zone, neither heating nor cooling occurs.

Without this buffer area, the system would permanently switch between heating and cooling. As soon as the setpoint was fallen below, the heating would be activated. After hardly reaching the setpoint, the cooling would immediately start, the temperature would fall below the setpoint and switch on the heating again.

Heating and cooling with continuous control

Cooling setpoint 24 °C ØEAD ZONE 4 K Heating setpoint 20 °C

In a 2-pipe system, i.e. if the changeover between heating and cooling is done via object²² and the actuating values for heating and cooling are output on a common object²³, the dead zone can be set to 0 K.

²² Parameter: Change over between heating and cooling = via object

²³ Parameter: Output of cooling actuating value = together with heating actuating value

6.7 Valve protection

If configured, the valve protection will be active if there was no change at the output for 7 days.

6.7.1 Channel has a switch output

The switching status will be inverted for 6 minutes. If there is a switching operation in this time, valve protection will be ended.

6.7.2 General has a 0-10 V output

Starting from the current control value, the output value will be increased to 100%, then decreased back to 0%, and again increased to the current control value. This happens at a speed of 1% per second.

During this, the parameters "minimum and maximum actuating value" are not taken into account, however, the parameters output voltage at 0% and 100% will be observed.

6.8 Short-circuit and overcurrent shutdown

The overcurrent monitoring is only active if the channel is configured as a switch output.

As soon as an overcurrent is detected at an output, the affected channel will be switched off. If the channel is still controlled, there will be another attempt to switch it on after 5 s. If an overcurrent is detected again, the channel finally switches off. If there is no overcurrent any more, the channel will be back in its normal state after 5 s.

If the channel is not controlled anymore, after it was switched off due to an overcurrent (e.g. due to PWM off period), it will be waited until the next switch-on. If there will be an overcurrent again, it will be finally switched off.

Switching off due to an overcurrent is indicated by flashing of the channel LED.

Confirmation:

The channels switched off due to overcurrent can **only be reactivated by manual confirmation**, with a short and simultaneous press on the two manual buttons.

Resetting is also done in case of mains failure and download.

6.9 Determining the maximum actuating value

6.9.1 Application

If in a system all actuators are opened only slightly, e.g. one at 5%, one at 12%, another at 7% etc., the boiler could decrease its output, because not much heating energy is needed. In order to do so, the boiler has to be informed about the actual energy demand of the system. This task is performed by the "Detect maximum actuating value" function.

6.9.2 Principle

First, within each heating actuator, the maximum actuating value of all channels (H1-H6 or H12) will be determined.

At the same time, the heating actuators (HMT 6 S/HMT 12 S devices) are permanently compared with each other. Those participants with a higher actuating value than the other heating actuators may send it; those with a smaller one do not send.

In order to accelerate this process: The greater the difference between its own and the received actuating value, the greater the speed at which the heating actuator sends.

Thus, the actuator with the highest actuating value sends first and outperforms all others.

6.9.3 In practice

The actuating value comparison takes place via the object *maximum actuating value*. For this, all HMT 6 S/HMT 12 S will be connected via this object with a common group address.

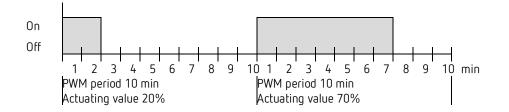
In order to start the actuating value comparison among the participants, one of the participants must send a value to this group address cyclically.

This task can be performed either by the boiler, or by one of the HMT 6 S/HMT 12 S. If it is the boiler, it must send the minimum possible value, i.e. 0%.

If it is one of the heating actuators, on the parameter page *General*, the parameter *Send maximum actuating value* must be set to *cyclically*.

This actuator then regularly sends its own maximum actuating value and the others can respond accordingly.

Irrespective of which participant acts as a trigger, for **all other** actuators, the *Send maximum actuating value* parameter must be set to the default value of *Only if own actuating value is greater*.

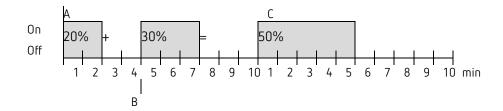

6.10 PWM cycle

6.10.1 Basic principle

In order to achieve e.g. a heating output of 50%, the 50% actuating value is converted into switch-on/switch-off cycles.

The actuator is switched on for 50% of the time and switched off for 50% of the time over a fixed period (10 minutes in our example).

Example: 2 different turn-on times of 2 and 7 minutes indicate the implementation of 2 different actuating values, that is once 20% and once 70% during a PWM period of 10 minutes.

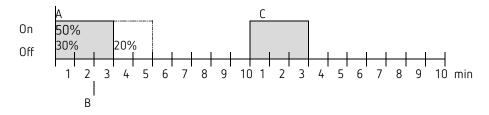


6.10.2 Response to changes in the actuating value

Every change in the actuating value is immediately transferred to the PWM cycle, in order to respond to changes in the quickest possible time.

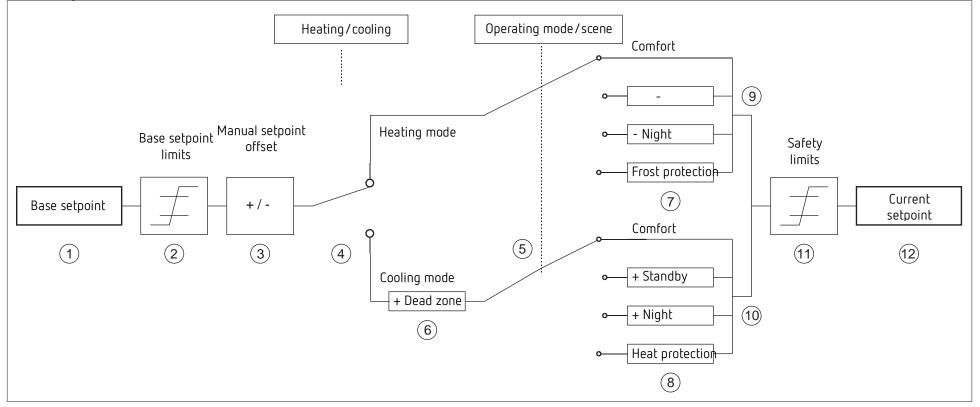
Example 1:

The last actuating value was 20% (A). A new actuating value of 50% is received during the cycle (B). The output is immediately switched on and the missing 30% turn-on time is added. The next cycle is executed with 50% (C).


If the rated switch-on time for the current cycle has already exceeded while receiving the new actuating value, the output is immediately switched off and the new actuating value is executed during the next cycle.

Example 2:

The last actuating value was 50% (A)


A new actuating value of 30% is received during the cycle (B).

The output is switched off after completing 30% of the PWM cycle and thus the new actuating value is already executed.

6.11 Setpoint calculation

- 1 Preset base setpoint
- 2 Max. and min. valid base setpoints
- 3 Manual setpoint offset
- 4 Change between heating and cooling: Automatically or via object
- 5 Selection of operating mode by object
- 6 In cooling mode, the setpoint is increased by the amount of the dead zone
- 7 The setpoint is replaced by the setpoint for frost protection mode
- 8 The setpoint is replaced by the setpoint for heat protection mode
- 9 Set point after reductions caused by the operating mode
- 10 Setpoint after increases caused by the operating mode
- 11 The limits for frost and heat protection must be adhered to
- 12 Current setpoint after increases, reductions and limits caused by the operation