DSA: Pressure switch

How energy efficiency is improved

Control and monitoring according to needs and with no auxiliary energy.

Features

- For regulating and monitoring pressure in liquids, gases and vapours
- Especially suitable for applications in compact installations
- Upper switching point can be set
- Fixed switching difference, no hysteresis setting is necessary
- Sealable

DSA14*F002

Ambient conditions					
		Admissible sensor temperature		$70^{\circ} \mathrm{C}$	
		Admissible ambient temperature		$-20 . .70^{\circ} \mathrm{C}$	
Construction					
		Fitting		Pipe and wall mounting	
		Housing		Transparent cover	
		Housing material		Impact-proof thermoplastic	
		Housing-mounted plug		Standard plug with female cable connector for cable of $\varnothing 6 \ldots 10 \mathrm{~mm}$	
Standards and directives					
		Type of protection ${ }^{2}$		IP 65 (EN 60529)	
		Protection class		1 (IEC 60730)	
CE conformity according to ${ }^{\text {3) }}$		Low-voltage directive 2006/95/EC		EN 60730-1, EN 60730-2-6	
		EMC directive 2004/108/EC		EN 61000-6-1, EN 61000-6-2 EN 61000-6-3, EN 61000-6-4	
		Machine directive 2006/42/EC (according to appendix IIB)		EN ISO 12100	
Overview of types					
Type	Setting range	Switching difference	Maximum pressure	Admissible vacuum loading	Weight
DSA140F002	0.5...2.5 bar	0.25 bar	12 bar	-0.7 bar	0.5 kg
DSA143F002	0.5...6 bar	0.3 bar	16 bar	-0.7 bar	0.5 kg
DSA146F002	1... 10 bar	0.4 bar	20 bar	-1.0 bar	0.4 kg

DSA: Pressure sensor made of brass for non-aggressive media; $X_{S}=$ upper switching point

[^0]

Accessories	
Type	Description
0035465000	Throttle screw for absorbing pressure surges, brass
0192222000	Cap nut with solder connector
0192700000	1 m capillary tube for absorbing pressure surges, copper
0214120000	Throttle screw for absorbing pressure surges, stainless steel
0259239000	Reduction piece $\mathrm{G}^{1 / 2} \mathbf{2}^{\prime \prime}$ on $7 / 16$ " 20-UNF-2A for copper tubes of $\varnothing 6 \mathrm{~mm}$, brass
0292001000	Setpoint adjuster according to customer's wishes (setting accuracy: $\pm 3 \%$ of the setting range, but a minimum of ± 0.2 bar)
0292004000	Setpoint adjuster sealed (with accessory 0292001 only)
0292018001	Damping screw for absorbing pressure surges in low viscosity media
0292150001	Fixing bracket for wall mounting
0296936000	Fixing brackets for rail: top-hat rail EN 60715, $35 \times 7.5 \mathrm{~mm}$ and $35 \times 15 \mathrm{~mm}$
0311572000	Screw fitting for copper tubes of $\varnothing 6 \mathrm{~mm}$, brass
0381141001	Profile sealing ring, copper, for $\mathrm{G}^{1} 2^{\prime \prime}$

0296936000: with accessory 0292150001 only

Description of operation

When the pressure exceeds the upper change-over point (adjustable setpoint X_{S}), the contacts switch from 1-2 to 1-3. When the pressure falls below the upper change-over point by the amount of the fixed switching difference Xsd, the contacts switch from 1-3 to 1-2.

Intended use

This product is only suitable for the purpose intended by the manufacturer, as described in the "Description of operation" section.
All related product documents must also be adhered to. Changing or converting the product is not admissible.

Electrical serviceable life

- The electrical switching elements are tested as per ENEC-00144 certificate 6(6) A, $250 \mathrm{~V} \sim, 5 \mathrm{E} 4$ electrical switching cycles; the temperature of the pressure switch applies
- Mechanical serviceable life of the pressure pads according to pressure $100>2 \times 10^{6}$ switch strokes
- Typically

$\cos \varphi=1$	$\cos \varphi=0.6$	$\left.\cos \varphi=0.3^{4}\right)$
$10 \mathrm{~A}, 250,000$ switchings	$3 \mathrm{~A}, 400,000$ switchings	$3 \mathrm{~A}, 250,000$ switchings
$5 \mathrm{~A}, 400,000$ switchings		$2 \mathrm{~A}, 400,000$ switchings
2 A, approx. 10^{6} switchings		$1 \mathrm{~A}, 700,000$ switchings

Technical appendix

$R C$ circuitry for inductive load

For the optimum RC circuitry, see the information from manufacturers of gates, relays, etc. If this is not available, the inductive load can be reduced by applying the following rule of thumb:

- Capacity of the RC circuitry $(\mu \mathrm{F})$ equal to or greater than the operating current (A)
- Resistance of the RC circuitry (Ω) approx. the same as the resistance of the coil (Ω) Effect on switching difference
The switching difference depends slightly on the setpoint applied. The switching differences specified in the PDS sheet are typical values for the start of the range. The effect of the setpoint on the switching difference increases the switching difference by: $\Delta X_{S d}=\left(\right.$ setpoint $X_{S}-$ start of the range $) \times 0.04$

[^1]
Materials

Materials that come into contact with the medium:
Pressure sensor made of brass (DSA): brass, stainless steel, nitrile rubber.

Disposal

When disposing of the product, observe the currently applicable local laws.
More information on materials can be found in the Declaration on materials and the environment for this product.

Connection diagram Dimension drawing

Accessories

Fr. Sauter AG
Im Surinam 55
CH-4016 Basel
Tel. +41 61-6955555
www.sauter-controls.com

[^0]: 1) If the contacts are subjected to a load greater than specified, the gold plating will be destroyed. They are then classed merely as silver contacts and lose the properties of gold-plated contacts
 2) Depending on the fitting position, see the fitting instructions. The devices are not suitable for outdoor applications.
 3) Excluded from the directive on pressure equipment 97/23/EC (as per Art. 1.3.6)
[^1]: 4) $\cos \varphi<0.3$: significant reduction in serviceable life. With RC circuitry, serviceable life as with $\cos \varphi>0.3$ (also see technical appendix)
